Home >

news Help

Publication Information


Title
Japanese:高速な画像分類のためのNeighbor-to-Neighbor探索 
English: 
Author
Japanese: 井上中順, 篠田浩一.  
English: Nakamasa Inoue, Koichi Shinoda.  
Language Japanese 
Journal/Book name
Japanese:電子情報通信学会技術研究報告 PRMU 
English:Technical Report IEICE PRMU 
Volume, Number, Page vol. 113    no. 493    pp. 97-102
Published date Mar 6, 2014 
Publisher
Japanese: 
English: 
Conference name
Japanese:パターン認識・メディア理解研究会(PRMU) 
English:Pattern Recognition and Media Understanding (PRMU) 
Conference site
Japanese:東京 
English:Tokyo 
Abstract 高速な画像分類のためのNeighbor-to-Neighbor(NTN)探索を提案する.NTN探索は,ベクトル量子化および混合ガウス分布の確率計算の計算量削減を行うアルゴリズムであり,近年注目されている,Bag-of-visual-wordsやFisher vectorを用いた画像分類の高速化が可能となる.NTN探索は入力となる各特徴量に対して,その近傍が定義されていることを仮定し,類似した特徴量を近傍から近傍へと探索して,特徴量の類似度に応じて計算を省略することで高速化を実現する.例えば,Dense samplingによって,格子点上から密に抽出されたSIFT特徴量に対してNTN探索を適用する場合,各SIFT特徴量に関して上下左右に隣接した点上のSIFT特徴量の集合を近傍と考えることで,類似したSIFT特徴量を隣から隣へと探索しつつベクトル量子化や混合ガウス分布に関する計算を高速に行うことができる.PASCAL VOC 2007 Classification Challengeにおける本手法の評価実験では,NTN探索の導入により,検出精度を保った状態で,ベクトル量子化および混合ガウス分布に関してそれぞれ77.4%,89.3%の計算量削減を実現した.

©2007 Tokyo Institute of Technology All rights reserved.