Home >

news Help

Publication Information


Title
Japanese:The phosphorylated pathway of serine biosynthesis affects sperm, embryo, and sporophyte development, and metabolism in Marchantia polymorpha 
English:The phosphorylated pathway of serine biosynthesis affects sperm, embryo, and sporophyte development, and metabolism in Marchantia polymorpha 
Author
Japanese: Mengyao Wang, Hiromitsu TABETA, Kinuka Ohtaka, Ayuko Kuwahara, Ryuichi Nishihama, Toshiki Ishikawa, Kiminori Toyooka, Mayuko Sato, Mayumi Wakazaki, Hiromichi Akashi, Hiroshi Tsugawa, Tsubasa Shoji, Yozo Okazaki, 吉田啓亮, Ryoichi Sato, Ali Ferjani, Takayuki Kohchi, Masami Hirai.  
English: Mengyao Wang, Hiromitsu TABETA, Kinuka Ohtaka, Ayuko Kuwahara, Ryuichi Nishihama, Toshiki Ishikawa, Kiminori Toyooka, Mayuko Sato, Mayumi Wakazaki, Hiromichi Akashi, Hiroshi Tsugawa, Tsubasa Shoji, Yozo Okazaki, Keisuke Yoshida, Ryoichi Sato, Ali Ferjani, Takayuki Kohchi, Masami Hirai.  
Language English 
Journal/Book name
Japanese:Communications Biology 
English:Communications Biology 
Volume, Number, Page        
Published date Jan. 24, 2024 
Publisher
Japanese: 
English: 
Conference name
Japanese: 
English: 
Conference site
Japanese: 
English: 
Official URL http://dx.doi.org/10.1038/s42003-023-05746-6
 
DOI https://doi.org/10.1038/s42003-023-05746-6
Abstract <jats:title>Abstract</jats:title><jats:p>Serine metabolism is involved in various biological processes. Here we investigate primary functions of the phosphorylated pathway of serine biosynthesis in a non-vascular plant <jats:italic>Marchantia polymorpha</jats:italic> by analyzing knockout mutants of Mp<jats:italic>PGDH</jats:italic> encoding 3-phosphoglycerate dehydrogenase in this pathway. Growth phenotypes indicate that serine from the phosphorylated pathway in the dark is crucial for thallus growth. Sperm development requires serine from the phosphorylated pathway, while egg formation does not. Functional Mp<jats:italic>PGDH</jats:italic> in the maternal genome is necessary for embryo and sporophyte development. Under high CO<jats:sub>2</jats:sub> where the glycolate pathway of serine biosynthesis is inhibited, suppressed thallus growth of the mutants is not fully recovered by exogenously-supplemented serine, suggesting the importance of serine homeostasis involving the phosphorylated and glycolate pathways. Metabolomic phenotypes indicate that the phosphorylated pathway mainly influences the tricarboxylic acid cycle, the amino acid and nucleotide metabolism, and lipid metabolism. These results indicate the importance of the phosphorylated pathway of serine biosynthesis in the dark, in the development of sperm, embryo, and sporophyte, and metabolism in <jats:italic>M. polymorpha</jats:italic>.</jats:p>

©2007 Institute of Science Tokyo All rights reserved.