Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:A logNHI = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401 
著者
和文: Watson, D., Fynbo, J. P. U., Ledoux, C., Vreeswijk, P., Hjorth, J., Smette, A., Andersen, A. C., Aoki, K., Augusteijn, T., Beardmore, A. P., Bersier, D., Castro Cerón, J. M., D'Avanzo, P., Diaz-Fraile, D., Gorosabel, J., Hirst, P., Jakobsson, P., Jensen, B. L., 河合 誠之, Kosugi, G., Laursen, P., Levan, A., Masegosa, J., Näränen, J., Page, K. L., Pedersen, K., Pozanenko, A., Reeves, J. N., Rumyantsev, V., Shahbaz, T., Sharapov, D., Sollerman, J., Starling, R. L. C., Tanvir, N., Torstensson, K., Wiersema, K..  
英文: Watson, D., Fynbo, J. P. U., Ledoux, C., Vreeswijk, P., Hjorth, J., Smette, A., Andersen, A. C., Aoki, K., Augusteijn, T., Beardmore, A. P., Bersier, D., Castro Cerón, J. M., D'Avanzo, P., Diaz-Fraile, D., Gorosabel, J., Hirst, P., Jakobsson, P., Jensen, B. L., Kawai, N., Kosugi, G., Laursen, P., Levan, A., Masegosa, J., Näränen, J., Page, K. L., Pedersen, K., Pozanenko, A., Reeves, J. N., Rumyantsev, V., Shahbaz, T., Sharapov, D., Sollerman, J., Starling, R. L. C., Tanvir, N., Torstensson, K., Wiersema, K..  
言語 English 
掲載誌/書名
和文: 
英文:Astrophysical Journal 
巻, 号, ページ Vol. 652        pp. 1011-1019
出版年月 2006年12月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
DOI https://doi.org/10.1086/508049
アブストラクト The optical afterglow spectrum of GRB 050401 (at z=2.8992+/-0.0004) shows the presence of a damped Lyα absorber (DLA), with logNHI=22.6+/-0.3. This is the highest column density ever observed in a DLA and is about 5 times larger than the strongest DLA detected so far in any QSO spectrum. From the optical spectrum, we also find a very large Zn column density, implying an abundance of [Zn/H]=-1.0+/-0.4. These large columns are supported by the early X-ray spectrum from Swift XRT, which shows a column density (in excess of Galactic) of logNH=22.21+0.06-0.08 assuming solar abundances (at z=2.9). The comparison of this X-ray column density, which is dominated by absorption due to α-chain elements, and the H I column density derived from the Lyα absorption line allows us to derive a metallicity for the absorbing matter of [α/H]=-0.4+/-0.3. The optical spectrum is reddened and can be well reproduced with a power law with SMC extinction, where AV=0.62+/-0.06. But the total optical extinction can also be constrained independent of the shape of the extinction curve: from the optical to X-ray spectral energy distribution, we find 0.5<~AV<~4.5. However, even this upper limit, independent of the shape of the extinction curve, is still well below the dust column that is inferred from the X-ray column density, i.e., AV=9.1+1.4-1.5. This discrepancy might be explained by a small dust content with high metallicity (low dust-to-metals ratio). ``Gray'' extinction cannot explain the discrepancy, since we are comparing the metallicity to a measurement of the total extinction (without reference to the reddening). Little dust with high metallicity may be produced by sublimation of dust grains or may naturally exist in systems younger than a few hundred megayears. Based in part on observations made at the European Southern Observatory, Paranal, Chile under program 075.D-0270, with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, with the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council, and on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

©2007 Institute of Science Tokyo All rights reserved.