Americium is a key element to design the FBR based nuclear fuel cycle, because of its long-term high radiological toxicity as well as a resource of even-mass-number plutonium by its transmutation in reactors, which contributes the enhancement of proliferation resistance. The present paper deals with the numerical analysis of the Am sample irradiation in Joyo to examine the transmutation performance of pure isotope in fast neutron environment during the irradiation, and deals with the comparison with the experimental result to evaluate the accuracy of current available numerical tool. In 241Am pure isotope sample, the burn-up calculation of Am transmutation ratio and principal nuclides accumulation are agreed with the measured data within 1-σ uncertainty caused of cross-section covariance. Isomeric ratio of 242Am in total 241Am capture reaction were calculated as 0.852±0.016 in the core and 0.85±0.025 in the axial and radial reactors. The current data and recently reported data by Koyama et. al 2008 support the latest version of nuclear data sets in ENDFB-VII and JENDL/AC-2008. From the view point of proliferation resistance, it was confirmed 241Amp reduces un-attractive Pu to abuse from the beginning to the end of irradiation, and it would have important role to denature Pu in future FBR based nuclear fuel cycle.