Hadoop has been widely used in various clusters to build scalable and high performance distributed file systems. However, Hadoop distributed file system (HDFS) is designed for large file management. In case of small files applications, those metadata requests will flood the network and consume most of the memory in Namenode thus sharply hinders its performance. Therefore, many web applications do not benefit from clusters with centered metanode, like Hadoop. In this paper, we compare our Fat-Btree based data access method, which excludes center node in clusters, with Hadoop. We show their different performance in different file I/O applications.