Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Research History Generation Using Maximum Margin Clustering of Research Papers Based on Metainformation 
著者
和文: グエン マン クーン, 加藤大智, 橋本泰一, 横田治夫.  
英文: NGUYEN MANH CUONG, Daichi Kato, Taiichi Hashimoto, Haruo Yokota.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ        
出版年月 2011年12月7日 
出版者
和文: 
英文:ACM 
会議名称
和文: 
英文:The 13th International Conference on Information Integration and Web-based Applications & Services (iiWAS2011) 
開催地
和文:ホーチミン市 
英文:Ho Chi Minh City, Vietnam 
アブストラクト Our research aim is the automatic generation of a researcher'sresearch history from research articles published on the internet.Research history generation based on the k-Meansclustering algorithm has been proposed in previous work.However, the performance of the k-Means algorithm is unsatisfactory.We propose a method based on Maximum MarginClustering (MMC). MMC is a new clustering algorithmbased on Support Vector Machines (SVM). It is known thatMMC is better than existing clustering algorithms such ask-Means. In this paper, we describe how to convert articlesinto vectors using metainformation about them and how todecide an initial setting for MMC automatically. We demonstrateby experiment that the purity of a method based onMMC is about 0.58 and its entropy is about 0.415. Thisresult is better than that achieved in previous work (purity:0.35, entropy: 0.47).

©2007 Institute of Science Tokyo All rights reserved.