Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Fork-Join and Data-Driven Execution Models on Multi-core Architectures: Case Study of the FMM 
著者
和文: AMERABDELHALIM, Naoya Maruyama, Miquel Pericas, Kenjiro Taura, Rio Yokota, 松岡聡.  
英文: Abdelhalim Amer, Naoya Maruyama, Miquel Pericas, Kenjiro Taura, Rio Yokota, SATOSHI MATSUOKA.  
言語 English 
掲載誌/書名
和文: 
英文:Supercomputing 
巻, 号, ページ Volume 7905       
出版年月 2013年 
出版者
和文: 
英文:Springer Berlin Heidelberg 
会議名称
和文: 
英文:International Supercomputing Conference 
開催地
和文: 
英文:Leipzig 
公式リンク http://link.springer.com/chapter/10.1007%2F978-3-642-38750-0_19
 
DOI https://doi.org/10.1007/978-3-642-38750-0_19
アブストラクト Extracting maximum performance of multi-core architectures is a difficult task primarily due to bandwidth limitations of the memory subsystem and its complex hierarchy. In this work, we study the implications of fork-join and data-driven execution models on this type of architecture at the level of task parallelism. For this purpose, we use a highly optimized fork-join based implementation of the FMM and extend it to a data-driven implementation using a distributed task scheduling approach. This study exposes some limitations of the conventional fork-join implementation in terms of synchronization overheads. We find that these are not negligible and their elimination by the data-driven method, with a careful data locality strategy, was beneficial. Experimental evaluation of both methods on state-of-the-art multi-socket multi-core architectures showed up to 22% speed-ups of the data-driven approach compared to the original method. We demonstrate that a data-driven execution of FMM not only improves performance by avoiding global synchronization overheads but also reduces the memory-bandwidth pressure caused by memory-intensive computations.

©2007 Institute of Science Tokyo All rights reserved.