Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:QC Chart Mining: Extracting Systematic Error Patterns from Quality Control Charts 
著者
和文: 稲田政則, 寺野隆雄.  
英文: Masanori Inada, Takao Terano.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ         pp. 3781-3787
出版年月 2005年10月 
出版者
和文: 
英文: 
会議名称
和文: 
英文:IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC 2005) 
開催地
和文: 
英文:Hawaii, United States 
公式リンク http://www.ieeesmc.org/Newsletter/sep2005/HAWAII.php
 
DOI https://doi.org/10.1109/ICSMC.2005.1571735
アブストラクト This paper presents a novel method; "QC Chart Mining", which extracts systematic error patterns from quality control charts in order to manage clinical test data at a medical laboratory. In this paper we describe the basic principle of a time series decomposition mechanism for QC Chart Mining. QC Chart Mining is used to recognize quality problems such as long-term trends and/or daily cyclic variations in analytical processes of clinical tests, then to improve the quality level over clinical laboratory medicine. Intensive experiments from both actual quality-control data and artificial data have revealed the validity of the proposed method. Our results have shown that the proposed method is useful and effective for quality management in a medical laboratory.

©2007 Institute of Science Tokyo All rights reserved.