Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Dynamic Collaborative Filtering by Learning Classifier Systems 
著者
和文: 村上英治, 寺野隆雄.  
英文: Eiji Murakami, Takao Terano.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ         pp. 276-281
出版年月 2000年7月 
出版者
和文: 
英文: 
会議名称
和文: 
英文:World Muiticonference on Systemics, Cybernetics and Informatics (SCI-2000) 
開催地
和文: 
英文:Orlando, Florida, United States 
アブストラクト Collaborative filtering, often used in E-commerce applications, is a method to group similar consumers based on their profiles, characteristics or attitudes on specific subjects. This paper proposes a novel method to implement dynamic collaborative filtering by Genetics-based machine learning, in which we employ Organizational-learning oriented Classifier System (OCS) [Takadama 99]. The characteristics of the proposed method for dynamic collaborative filtering are summarized as follows: (1) The proposed method is effective in distributed computer environments with PCs for small number of users. We do not require a centralized database or data management. (2) It learns users' profiles from the individual behaviors of them then generates the recommendation/advice for each people.

©2007 Institute of Science Tokyo All rights reserved.