Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Extending Content-Based Recommendation by Order-MAtching and Cross-Matching Methods 
著者
和文: Yasuo Hirooka, 寺野隆雄, 大塚雄吉.  
英文: Yasuo Hirooka, Takao Terano, Yukichi Otsuka.  
言語 English 
掲載誌/書名
和文: 
英文:LNCS 1875 
巻, 号, ページ         pp. 177-190
出版年月 2000年9月 
出版者
和文: 
英文:Springer-Berlag, Berlin 
会議名称
和文: 
英文:1st International Conference EC-Web 2000 
開催地
和文: 
英文:London, United Kingdam 
公式リンク http://www.dexa.org/previous/dexa2000/index.html
 
DOI https://doi.org/10.1007/3-540-44463-7_16
アブストラクト We propose TwinFinder: a recommender system for an on-line bookstore. TwinFinder provides two recommendation methods, the Order-Matching Method (OMM) and the Cross-Matching Method (CMM). TwinFinder profiles a customer’s interest based on his/her purchase history. Thus, it generates a vector of keywords from titles, authors, synopses, and categories of books purchased. OMM keeps this vector to each category the books belong to. Thus, OMM avoids recommending books that share only one or two keywords but belong to the categories in which the customer has no interest. When a customer has purchased several books that range over two or more categories, TwinFinder generates recommendations based on CMM. CMM looks for books in a category based on the keywords generated from the purchased books in other categories. Thus, TwinFinder can generate rather useful and surprising recommendations by OMM and CMM. We have implemented and validated TwinFinder in the e-business system of a bookstore in Japan.

©2007 Institute of Science Tokyo All rights reserved.