Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Can Multiagents Learn in Organization? -- Analyzing Organizational Learning-Oriented Classifier System 
著者
和文: 高玉圭樹, 寺野隆雄, 下原勝憲.  
英文: Keiki Takadama, Takao Terano, Katsunori Shimohara.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ        
出版年月 1999年8月 
出版者
和文: 
英文: 
会議名称
和文: 
英文:IJCAI'99 Workshop on Agents Learning about, from and other Agents 
開催地
和文: 
英文:Stockholm, Sweden 
公式リンク http://www.ijcai.org/past/ijcai-99/
 
アブストラクト Organizational-learning oriented Classifier System (OCS) is an extension of Learning Classifier Systems (LCSs) to multiagent environments with introducing the concepts of organizational learning (OL) in organization and management science. Unlike the conventional multiagent systems in the literature, which utilize specific and elaborate techniques, OCS integrates four mechanisms from multi-strategic standpoints. This paper investigates the performance of OCS from the viewpoint of OL and then compares it with conventional LCSs. Intensive experiments on a complex scalable domain have revealed that (1) the integration of four learning mechanisms in OL is effective in solution and computational cost; (2) OCS finds good solutions at less computational cost in comparison with conventional LCSs.

©2007 Institute of Science Tokyo All rights reserved.