Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte 
著者
和文: 難波江 裕太, Kevin D. Pointon, John T. S. Irvine.  
英文: Yuta Nabae, Kevin D. Pointon, John T. S. Irvine.  
言語 English 
掲載誌/書名
和文: 
英文:Energy & Environmental Science 
巻, 号, ページ Vol. 1    No. 1    pp. 148-155
出版年月 2008年 
出版者
和文: 
英文:The Royal Society of Chemistry 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク http://dx.doi.org/10.1039/B804785E
 
DOI https://doi.org/10.1039/B804785E
アブストラクト The hybrid direct carbon fuel cell (HDCFC) with solid oxide and molten carbonate binary electrolyte merges solid oxide fuel cell (SOFC) and molten carbonate fuel cell technologies to achieve direct conversion of solid carbon to electric power. The purpose of this study is to investigate in detail the electrochemistry of the oxidation of solid carbon in the carbon/carbonate slurry in the HDCFC. A planar test cell has been fabricated employing conventional SOFC materials and a eutectic carbonate mixture of lithium carbonate and potassium carbonate. The HDCFC with a model fuel, carbon black XC-72R, shows very high open circuit voltages (OCVs), approximately 1.5 V at 550-700 [degree]C, especially after a high temperature operation at 900 [degree]C, where carbonate decomposes to O2- and CO2. The carbon/carbonate slurry increases the active reaction zone from a two-dimensional Ni/YSZ anode to a three-dimensional slurry and significantly enhances the carbon oxidation. The high OCV is probably due to the low activity of CO2 in the slurry, which results from the recombination of CO2 and O2-. Gaseous products were analysed using an online gas chromatograph, and CO2 and CO were detected, with their selectivity found to be dependent on temperature. Solid carbon is electrochemically oxidised to CO2 and the final distribution of the products is dominated by the equilibrium of the Boudouard reaction (C + CO2 [right left arrows] 2CO).

©2007 Institute of Science Tokyo All rights reserved.