Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Fast Sparse General Matrix-Matrix Multiplication on GPU with Low Memory Usage 
著者
和文: 長坂 侑亮, 額田 彰, 松岡 聡.  
英文: Yusuke Nagasaka, Akira Nukada, Satoshi Matsuoka.  
言語 English 
掲載誌/書名
和文: 
英文: 
巻, 号, ページ        
出版年月 2016年11月15日 
出版者
和文: 
英文: 
会議名称
和文: 
英文:The International Conference for High Performance Computing, Networking, Storage and Analysis (SC16) 
開催地
和文: 
英文:Salt Lake City, Utah 
公式リンク http://sc16.supercomputing.org/sc-archive/tech_poster/tech_poster_pages/post180.html
 
アブストラクト Sparse general matrix-matrix multiplication (SpGEMM) is one of the key kernel of preconditioner such as algebraic multigrid method or graph algorithms. The performance of SpGEMM is quite low because of its random memory access to both input and output matrices. Moreover, the pattern of non-zero elements of resulting matrix is not known beforehand, which makes it hard to manage the memory usage. There are several GPU implementations of fast SpGEMM computation while consuming large temporal memory. We devise new SpGEMM algorithm requiring small amount of memory so that we can compute larger matrices using limited device memory of GPU. Accesses to input matrices are optimized for coalesced memory access. We devise efficient hash table on shared memory to calculate output matrix with appropriate case analysis for better load-balancing. Our algorithm achieves speedups of up to x4.0 in single precision and x3.3 in double precision compared to existing fast SpGEMM libraries.

©2007 Institute of Science Tokyo All rights reserved.