This study demonstrates the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)-immobilized Petri dishes by drop-casting a star-shaped copolymer of hyperbranched polystyrene (HBPS) possessing PNIPAM arms (HBPS-g-PNIPAM) functionalized with polar groups. HBPS was synthesized via reversible addition窶吐ragmentation chain transfer (RAFT) self-condensing vinyl polymerization (SCVP), and HBPS polymers with different terminal structures were prepared by changing the monomer structure. HBPS-g-PNIPAM was synthesized by the grafting of PNIPAM from each terminal of HBPS. To tune the cell adhesion and detachment properties, polar functional groups such as carboxylic acid and dimethylamino groups were introduced to HBPS-g-PNIPAM. Based on surface characterization using scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements, the advantage of the hyperbranched structure for the PNIPAM immobilization was evident in terms of the uniformity, stability, and thermoresponsiveness. Successful cell sheet harvesting was demonstrated on dishes coated with HBPS-g-PNIPAM. In addition, the cell adhesion and detachment properties could be tuned by the introduction of polar functional groups.