Home >

news ヘルプ

論文・著書情報


タイトル
和文:マクロ病理マルチスペクトル画像からの再構成反射率を⽤いた⽪膚組織の⼆元悪性腫瘍分類 
英文:Binary Malignancy Classification of Skin Tissue using Reconstructed Reflectance from Macropathology Multi-Spectral Images 
著者
和文: Aloupogianni Eleni, 鈴木 裕之, 市村 孝也3, 佐々木 惇, 柳澤 宏人, 土田 哲也, 石川 正弘, 小林 直樹, 小尾 高史.  
英文: Eleni Aloupogianni, Hiroyuki Suzuki, Takaya Ichimura, Atsushi Sasaki, Hiroto Yanagisawa, Tetsuya Tsuchida, Masahiro Ishikawa, Naoki Kobayashi, Takashi Obi.  
言語 English 
掲載誌/書名
和文:第38回日本医用画像工学会大会予稿集 
英文: 
巻, 号, ページ         pp. 645-647
出版年月 2019年7月 
出版者
和文:日本医用画像工学会 
英文:JAMIT:The Japanese Society of Medical Imaging Technology 
会議名称
和文:第38回日本医用画像工学会大会 
英文:JAMIT Annual Meeting 2019 
開催地
和文:奈良 
英文:Nara 
公式リンク https://jamit2019.jamit.jp/dl/jamit2019_proceedings.pdf
 
アブストラクト This study investigates whether reconstructed spectral reflectance from macropathology multi-spectral images (macroMSI) can assist binary classification of tissue malignancy to identify excised tissue margin during skin cancer diagnosis. We captured high resolution 7-channel macroMSI of 10 samples before and after formalin fixing and a pathologist labeled 115 regions of interest. We reconstructed spectral reflectance by adaptive Wiener Estimation. Subsets of reconstructed spectra were input to k-Nearest Neighbors (kNN) and Support Vector Machine (SVM) classifiers and evaluated by average area under curve of stratified 5-fold cross validation. Results revealed that unfixed spectra were a superior feature set as classifier input. SVM outperformed kNN classifier.

©2007 Institute of Science Tokyo All rights reserved.