Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Transformer-Based Estimation of Spoken Sentences Using Electrocorticography 
著者
和文: Shuji Komeiji, Kai Shigemi, Takumi Mitsuhashi, Yasushi Iimura, Hiroharu Suzuki, Hidenori Sugano, 篠田 浩一, 田中 聡久.  
英文: Shuji Komeiji, Kai Shigemi, Takumi Mitsuhashi, Yasushi Iimura, Hiroharu Suzuki, Hidenori Sugano, Koichi Shinoda, Toshihisa Tanaka.  
言語 English 
掲載誌/書名
和文: 
英文:ICASSP2022 
巻, 号, ページ        
出版年月 2022年5月 
出版者
和文: 
英文:IEEE 
会議名称
和文: 
英文:2022 IEEE International Conference on Acoustics, Speech and Signal Processing 
開催地
和文: 
英文: 
公式リンク https://ieeexplore.ieee.org/document/9747443
 
DOI https://doi.org/10.1109/ICASSP43922.2022.9747443
アブストラクト Invasive brain–machine interfaces (BMIs) are a promising neurotechnological venture for achieving direct speech communication from a human brain, but it faces many challenges. In this paper, we measured the invasive electrocorticogram (ECoG) signals from seven participating epilepsy patients as they spoke a sentence consisting of multiple phrases. A Transformer encoder was incorporated into a "sequence-to-sequence" model to decode spoken sentences from the ECoG. The decoding test revealed that the use of the Transformer model achieved a minimum phrase error rate (PER) of 16.4%, and the median (±standard deviation) across seven participants was 31.3% (±10.0%). Moreover, the proposed model with the Transformer achieved significantly better decoding accuracy than a conventional long short-term memory model.

©2007 Institute of Science Tokyo All rights reserved.