English
Home
各種検索
研究業績検索
論文・著書検索
( 詳細検索 )
特許検索
( 詳細検索 )
研究ハイライト検索
( 詳細検索 )
研究者検索
組織・担当から絞り込む
サポート
よくあるご質問(FAQ)
T2R2登録申請
学位論文登録について
組織単位データ出力について
(学内限定)
サポート・問合せ
T2R2について
T2R2とは?
運用指針
リーフレット
本文ファイルの公開について
関連リンク
東京科学大学
東京科学大学STARサーチ
国立情報学研究所(学術機関リポジトリ構築連携支援事業)
Home
>
ヘルプ
論文・著書情報
タイトル
和文:
マカクザルの広域皮質脳波に基づき安静閉眼状態と麻酔投与状態を判別する深層学習モデルの開発
英文:
著者
和文:
小林 般, 宗田 卓史, 山口 博行,
小松 三佐子
, 本田 学, 山下 祐一.
英文:
小林 般, 宗田 卓史, 山口 博行,
Misako Komatsu
, 本田 学, 山下 祐一.
言語
Japanese
掲載誌/書名
和文:
人工知能学会全国大会論文集
英文:
巻, 号, ページ
Vol. JSAI2022 No. 0 pp. 3Yin238-3Yin238
出版年月
2022年6月
出版者
和文:
一般社団法人 人工知能学会
英文:
会議名称
和文:
英文:
開催地
和文:
英文:
アブストラクト
<p>皮質脳波(ECoG)は,基礎・臨床場面での活用が期待される脳機能計測手法である.しかし,膨大な多次元時系列データとなるため,周波数解析など従来の解析では有益な情報が見落とされる可能性がある.この問題に対して本研究では,畳み込みニューラルネットワーク(CNN)を用いた広域皮質ECoG解析手法を提案した.脳波が意識状態の評価方法として用いられることに着目し,マカクザルの安静閉眼時と麻酔投与時の判別を課題とした.スペクトログラム画像に変換したECoGデータを入力とし,CNNを訓練した.学習の結果,未学習のデータ収録日,未学習の個体への汎化性能は98.5%,92.9%であった.一方,異なる麻酔薬条件に対しては,86.4%だった.麻酔薬間の汎化が収録日や個体と比較し低かった原因として,麻酔薬の作用機序の違いが考えられた.そこでSmoothGradによる周波数解析を実施したところ,CNNの麻酔薬ごとの周波数帯域感度の違いを可視化できた.これらの結果から,CNNはECoGから有益な情報を抽出し,動物の意識状態の予測手法として有望であり,神経科学の基礎研究・臨床応用などへの活用可能性が示唆された.</p>
©2007
Institute of Science Tokyo All rights reserved.