Home >

news ヘルプ

論文・著書情報


タイトル
和文:Generation of sub-100 fs electron pulses for time-resolved electron diffraction using a direct synchronization method 
英文:Generation of sub-100 fs electron pulses for time-resolved electron diffraction using a direct synchronization method 
著者
和文: 田久保耕, BANUSamiran, JINSICHEN, 金子水咲, Wataru Yajima, Makoto Kuwahara, Yasuhiko Hayashi, 石川忠彦, 沖本洋一, Masaki Hada, 腰原伸也.  
英文: Kou Takubo, Samiran Banu, Sichen Jin, Misaki Kaneko, Wataru Yajima, Makoto Kuwahara, Yasuhiko Hayashi, Tadahiko Ishikawa, Yoichi Okimoto, Masaki Hada, Shin-ya Koshihara.  
言語 English 
掲載誌/書名
和文:Review of Scientific Instruments 
英文:Review of Scientific Instruments 
巻, 号, ページ Vol. 93    No. 5    pp. 053005
出版年月 2022年5月 
出版者
和文: 
英文: 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク https://doi.org/10.1063/5.0086008
 
DOI https://doi.org/10.1063/5.0086008
アブストラクト <jats:p> To investigate photoinduced phenomena in various materials and molecules, ultrashort pulsed x-ray and electron sources with high brightness and high repetition rates are required. The x-ray and electron’s typical and de Broglie wavelengths are shorter than lattice constants of materials and molecules. Therefore, photoinduced structural dynamics on the femtosecond to picosecond timescales can be directly observed in a diffraction manner by using these pulses. This research created a tabletop ultrashort pulsed electron diffraction setup that used a femtosecond laser and electron pulse compression cavity that was directly synchronized to the microwave master oscillator (∼3 GHz). A compressed electron pulse with a 1 kHz repetition rate contained 228 000 electrons. The electron pulse duration was estimated to be less than 100 fs at the sample position by using photoinduced immediate lattice changes in an ultrathin silicon film (50 nm). The newly developed time-resolved electron diffraction setup has a pulse duration that is comparable to femtosecond laser pulse widths (35–100 fs). The pulse duration, in particular, fits within the timescale of photoinduced phenomena in quantum materials. Our developed ultrafast time-resolved electron diffraction setup with a sub-100 fs temporal resolution would be a powerful tool in material science with a combination of optical pump–probe, time-resolved photoemission spectroscopic, and pulsed x-ray measurements. </jats:p>

©2007 Tokyo Institute of Technology All rights reserved.