Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Alkoxide-Decorated Copper Nanoparticles on Amidine-Modified Polymers as Hydrogenation Catalysts for Enabling H2 Heterolysis 
著者
和文: 亘理 龍, 伊藤 孝憲, 桑田 繁樹, 榧木 啓人.  
英文: R. Watari, Takanori Itoh, Shigeki Kuwata, Yoshihito Kayaki.  
言語 English 
掲載誌/書名
和文: 
英文:ACS Catalysis 
巻, 号, ページ Vol. 13    Issue 8    Page 5159–5169
出版年月 2023年3月30日 
出版者
和文: 
英文:American Chemical Society 
会議名称
和文: 
英文: 
開催地
和文: 
英文: 
公式リンク https://pubs.acs.org/doi/10.1021/acscatal.3c00246
 
DOI https://doi.org/10.1021/acscatal.3c00246
アブストラクト Direct formation of Cu nanoparticles was accomplished on an amidine- and guanidine-functionalized polymer (polystyrene-bound 1,8-diazabicyclo[5.4.0]undec-7-ene (PS-DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (PS-TBD), respectively) by thermal treatment of Cu(acac)2 (acac = acetylacetonato) in methanol under pressurized H2. The immobilized structure was characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), elemental analysis, and microscopic analysis. X-ray photoelectron spectroscopy (XPS) data indicated that the nanoparticles consisted of Cu(0) and oxygenated Cu(I). The Cu(0)/Cu(I) ratio was determined by X-ray absorption spectroscopy. In particular, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) studies indicated the inclusion of alkoxides bound to Cu nanoparticles. Further 13C-labeled experiments allowed us to identify the Cu methoxide species by solid-state 13C nuclear magnetic resonance (NMR). A series of alkoxide-incorporated Cu nanoparticles were proven to facilitate H2 heterolysis and were applied in the catalytic hydrogenation of CO2 to formate salts in the presence of a nitrogen base. The catalytic activity increased with decreased mean particle size and increased Cu(I) content, indicating that the Cu(I) alkoxide species played an indispensable role in hydrogenation. The combination of Cu/PS-DBU and 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG) achieved a maximum turnover number of 2450 at 100 °C without leaching or aggregation of the nanosized catalysts.

©2007 Tokyo Institute of Technology All rights reserved.