One of the purposes of the force feedback device for virtual reality is to prevent the user’s body from penetrating virtual objects and/or to facilitate object manipulations. However, as such devices are fixed, their workspace is confined to their movable range. To address this limitation, we propose a lightweight and portable device that is grounded and capable of presenting force but has no workspace constraints. To evaluate the performance of the proposed device, we measured hand trajectories and presentation forces while presenting objects in the shape of a wall, table, and sphere.