Home >

news ヘルプ

論文・著書情報


タイトル
和文: 
英文:Diffusion Pretraining for Gait Recognition in the Wild 
著者
和文: Wei Ming Neo, 篠田浩一, Tat-Jen Cham.  
英文: Wei Ming Neo, Koichi Shinoda, Tat-Jen Cham.  
言語 English 
掲載誌/書名
和文: 
英文:2025 IEEE International Conference on Image Processing (ICIP) 
巻, 号, ページ         pp. 1295 - 1300
出版年月 2025年9月14日 
出版者
和文: 
英文:IEEE 
会議名称
和文: 
英文:The IEEE International Conference on Image Processing (ICIP) 2025 
開催地
和文: 
英文:Alaska, Anchorage 
ファイル
DOI https://doi.org/10.1109/ICIP55913.2025.11084665
アブストラクト Recently, diffusion models have garnered much attention for their remarkable generative capabilities. Yet, their application for representation learning remains largely unexplored. In this paper, we explore the potential of diffusion models to pretrain the backbone of a deep learning model for a specific application—gait recognition in the wild. To do so, we condition a latent diffusion model on the output of a gait recognition model backbone. Our pretraining experiments on the Gait3D and GREW datasets reveal an interesting phenomenon: diffusion pretraining causes the gait recognition backbone to separate gait sequences belonging to different subjects further apart than those belonging to the same subjects. Subsequently, our transfer learning experiments on Gait3D and GREW show that the pretrained backbone can serve as an effective initialization for the downstream gait recognition task, improving gait recognition accuracies by as much as 7.9% on Gait3D and 4.2% on GREW.

©2007 Institute of Science Tokyo All rights reserved.