|
内藤聡 研究業績一覧 (46件)
論文
-
Cristian Lenart,
Satoshi Naito,
Daisuke Sagaki.
A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory,
Selecta Mathematica (New Sries),
Springer Nature,
Vol. 30,
no. 3,
Paper No. 39,
Mar. 2024.
-
Takeshi Ikeda,
Shinsuke Iwao,
Satoshi Naito.
Closed k-Schur Katalan functions as K-homology Schubert representatives of the affine Grassmannian,
Transactions of the American Mathematical Society, Series B,
American Mathematical Society,
Vol. 11,
pp. 667--702,
Mar. 2024.
-
Takafumi Kouno,
Cristian Lenart,
Satoshi Naito,
Daisuke Sagaki.
Quantum K-theory Chevalley formulas in the parabolic case,
Journal of Algebra,
Elsevier Inc.,
Vol. 645,
pp. 1--53,
Feb. 2024.
-
Takafumi Kouno,
Cristian Lenart,
Satoshi Naito.
New structure on the quantum alcove model with applications to representation theory and Schubert calculus,
Journal of Combinatorial Algebra,
European Mathematical Society Press,
Vol. 7,
no. 3-4,
pp. 347--400,
Nov. 2023.
-
Takafumi Kouno,
Satoshi Naito,
Daniel Orr.
Identities of inverse Chevalley type for the graded characters of level-zero Demazure submodules over quantum affine algebras of type C,
Algebras and Representation Theory,
Springer Nature,
Vol. 27,
no. 1,
pp. 429--460,
Aug. 2023.
-
Cristian Lenart,
Satoshi Naito,
Daniel Orr,
Daisuke Sagaki.
Inverse K-Chevalley formulas for semi-infinite flag manifolds, II: Arbitrary weights in ADE type,
Advances in Mathematics,
Elsevier Inc.,
Vol. 423,
June 2023.
-
Takafumi Kouno,
Satoshi Naito,
Daisuke Sagaki.
Chevalley formula for anti-dominant minuscule fundamental weights in the equivariant K-group of partial flag manifolds,
J. Combin. Theory Ser. A,
Elsevier Inc.,
Vol. 192,
Nov. 2022.
-
Satoshi Naito,
Daisuke Sagaki.
Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at t = infinity,
Transformation Groups,
Springer,
Vol. 26,
pp. 1077--1111,
Dec. 2021.
-
Satoshi Naito,
Takafumi Kouno,
Daniel Orr,
Daisuke Sagaki.
Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type,
Forum of Mathematics, Sigma,
Cambridge University Press,
Vol. 9,
Paper No. e51,
July 2021.
-
Satoshi Naito,
Daniel Orr,
Daisuke Sagaki.
Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds,
Adv. Math.,
Elsevier Inc.,
Vol. 387,
Paper No. 107828,
July 2021.
-
Syu Kato,
Satoshi Naito,
Daisuke Sagaki.
Equivariant K-theory of semi-infinite flag manifolds and the Pieri-Chevalley formula,
Duke Mathematical Journal,
Duke University Press,
Vol. 169,
No. 13,
pp. 2421--2500,
Sept. 2020.
-
Satoshi Naito,
Fumihiko Nomoto,
Daisuke Sagaki.
Tensor product decomposition theorem for quantum Lakshmibai-Seshadri paths and standard monomial theory for semi-infinite Lakshmibai-Seshadri paths,
J. Combin. Theory Ser. A,
Elsevier Inc.,
Vol. 169,
Jan. 2020.
-
Satoshi Naito,
Fumihiko Nomoto,
Daisuke Sagaki.
Representation-theoretic interpretation of Cherednik-Orr's Recursion Formula for the specialization of nonsymmetric Macdonald polynomials at t = infinity,
Transformation Groups,
Birkhauser,
Vol. 24,
No. 1,
pp. 155-191,
Mar. 2019.
-
Satoshi Naito,
Fumihiko Nomoto,
Daisuke Sagaki.
Specialization of nonsymmetric Macdonald polynomials at t = infinity and Demazure submodules of level-zero extremal weight modules,
Transactions of the American Mathematical Society,
American Mathematical Society,
Vol. 370,
no. 4,
pp. 2739--2783,
Apr. 2018.
-
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki,
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki,
Cristian Lenart,
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki,
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki,
Cristian Lenart,
Satoshi Naito,
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki.
A uniform model for Kirillov-Reshetikhin crystals III: nonsymmetric Macdonald polynomials at t = 0 and Demazure characters,
Transform. Groups,
Springer,
Vol. 22,
no. 4,
pp. 1041--1079,
Dec. 2017.
-
Cristian Lenart,
Satoshi Naito,
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki.
A unifor model for Kirillov-Reshetikhin crystals II: Alcove model, Path model, and P = X,
International Mathematics Research Notices,
Oxford University Press,
Vol. 2017,
no. 14,
pp. 4259--4319,
July 2017.
-
Satoshi Naito,
Hideya Watanabe.
A combinatorial formula expressing periodic R-polynomials,
Journal of Combinatorial Theory Series A,
Elsevier Inc.,
Vol. 148,
pp. 197--243,
May 2017.
-
Naoki Fujita,
Satoshi Naito.
Newton-Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases,
Math. Z.,
Springer Nature,
Vol. 285,
no. 1-2,
pp. 325--352,
Feb. 2017.
-
Satoshi Naito,
Daisuke Sagaki.
Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials,
Math. Z.,
Springer Nature,
Vol. 283,
no. 3-4,
pp. 937--978,
Aug. 2016.
-
Motohiro Ishii,
Satoshi Naito,
Daisuke Sagaki.
Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal weight modules over quantum affine algebras,
Advances in Mathematics,
Elsevier Inc.,
Vol. 290,
pp. 967--1009,
Feb. 2016.
-
Cristian Lenart,
Satoshi Naito,
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki.
Quantum Lakshmibai-Seshadri paths and root operators,
Advanced Studies in Pure Mathematics,
The Mathematical Society of Japan,
Vol. 71,
pp. 267--294,
2016.
-
Cristian Lenart,
Satoshi Naito,
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki.
Explicit description of the degree function in terms of quantum Lakshmibai-Seshadri paths,
Toyama Mathematical Jounal,
Department of Mathematics, Toyama University,
Vol. 37,
pp. 107--130,
2015.
-
Cristian Lenart,
Satoshi Naito,
Anne Schilling,
Mark Shimozono,
Daisuke Sagaki.
A uniform model for Kirillov-Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph,
International Mathematics Research Notices,
Oxford Univ. Press,
Vol. 2015,
no. 7,
pp. 1848--1901,
Jan. 2014.
-
Satoshi Naito,
Daisuke Sagaki,
Yosihisa Saito.
Toward Berenstein-zelevinsky data in affine type A, part III: Proof of the connectedness,
Springer Proceedings in Mathematics and Statistics,
Vol. 40,
pp. 361-402,
2013.
-
Satoshi Naito,
Daisuke Sagaki,
Yoshihisa Saito.
Toward Berenstein-Zelevinsky data in affine type A, Part II: Explicit description,
10th International Conference on Representation Theory of Algebraic Groups and Quantum Groups,
ALGEBRAIC GROUPS AND QUANTUM GROUPS,
AMER MATHEMATICAL SOC,
Vol. 565,
pp. 185-216,
2012.
-
Sagaki, Daisuke,
Saito, Yoshihisa,
Daisuke Sagaki,
Yoshihisa Saito,
Satoshi Naito,
Daisuke Sagaki,
Yoshihisa Saito.
Toward Berenstein-Zelevinsky data in affine type A, Part I: Construction of the affine analogs,
10th International Conference on Representation Theory of Algebraic Groups and Quantum Groups,
ALGEBRAIC GROUPS AND QUANTUM GROUPS,
AMER MATHEMATICAL SOC,
Vol. 565,
pp. 143-+,
2012.
-
Satoshi Naito,
Sagaki, D..
Tensor product multiplicities for crystal bases of extremal weight modules over quantum infinite rank affine algebras of types B ∞, C ∞, and D ∞,
Transactions of the American Mathematical Society,
Vol. 364,
No. 12,
pp. 6531-6564,
2012.
国際会議発表 (査読なし・不明)
-
Satoshi Naito.
Description of the Chevalley formula for the torus-equivariant quantum K-group of partial flag manifolds of (co-) minuscule type in terms of the parabolic quantum Bruhat graph,
RIMS Workshop on Representation Theory of Algebraic Groups and Quantum Groups -- in honor of Professor Ariki's 60th birthday --,
Oct. 2019.
-
Satoshi Naito.
A description of the Z[P]-module structure of the K-theory of the finite-dimensional flag manifold in terms of a generalization of LS paths,
Workshop on Crystals and Their Generalizations,
Mar. 2019.
-
Satoshi Naito.
Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds,
Workshop on Quantum K-theory and Related Topics,
Nov. 2018.
-
Satoshi Naito.
Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds,
Workshop on Geometry and Representation Theory at the interface of Lie Algebras and Quivers,
Sept. 2018.
-
Satoshi Naito.
Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at infinity,
Conference on Algebraic Representation Theory 2017,
Nov. 2017.
-
Satoshi Naito.
Standard Monomial Theory for Semi-infinite LS Paths and Semi-infinite Flag Manifolds,
2017 Taipei workshop on Representation Theory of Lie Superalgebras and Related Topics,
July 2017.
-
Lenart, Cristian,
Satoshi Naito,
Sagaki, Daisuke,
Schilling, Anne,
Shimozono, Mark.
AFFINE CRYSTALS, MACDONALD POLYNOMIALS AND COMBINATORIAL MODELS EXTENDED ABSTRACT,
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES,
EDITURA ACAD ROMANE,
Vol. 62,
No. 1,
pp. 113-135,
2017.
-
Satoshi Naito.
Pieri-Chevalley type formula for equivariant K-theory of semi-infinite flag manifolds,
Conference on Algebraic Representation Theory,
Dec. 2016.
-
Satoshi Naito.
Standard monomial theory for semi-infinite LS paths with geometric application,
Workkshop on Geometric Representation Theory,
Oct. 2016.
-
Satoshi Naito.
Symmetric Macdonald polynomials and pseudo-quantum Lakshmibai-Seshadri paths,
Infinite Analysis 2016,
Mar. 2016.
-
Satoshi Naito.
Specializations of symmetric Macdonald polynomials and pseudoQLS paths,
Summer School and Workshop on Lie Theory and Representation Theory IV,
July 2015.
-
Lenart, C.,
Satoshi Naito,
Sagaki, D.,
Schilling, A.,
Shimozono, M..
A uniform model for kirillov-reshetikhin crystals,
Discrete Mathematics and Theoretical Computer Science,
pp. 25-36,
2013.
国内会議発表 (査読なし・不明)
-
Satoshi Naito.
A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A,
第 19 回代数・解析・幾何学セミナー,
Feb. 2024.
-
Satoshi Naito.
Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds,
京学数理研共同研究集会「組合せ論的表現論の諸相」,
Oct. 2018.
-
内藤聡.
量子アフィン代数の表現論,
日本数学会 2018 年度年会,
Mar. 2018.
-
Satoshi Naito.
Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at infinity,
Workshop on Finite Groups, VOAs, and Related Topics 2018,
Mar. 2018.
-
内藤聡.
アフィン量子群上の extremal ウエイト加群の Demazure 部分加群の指標公式と、非対称 Macdonald 多項式の特殊化,
2016 年度日本数学会秋季総合分科会代数学分科会特別講演,
Sept. 2016.
-
内藤聡.
対称 Macdonald 多項式の t = 0 における特殊化と、アフィン量子群の有限次元表現,
第 60 回代数学シンポジウム,
Sept. 2015.
-
Satoshi Naito.
Comparison of the two specializations of nonsymmetric Macdonald polynomials: at zero and at infinity,
Winter School on Representation Theory,
Jan. 2015.
[ BibTeX 形式で保存 ]
[ 論文・著書をCSV形式で保存
]
[ 特許をCSV形式で保存
]
|