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Abstract. Although speech, derived from reading texts, and similar
types of speech, e.g. that from reading newspapers or that from news
broadcast, can be recognized with high accuracy, recognition accuracy
drastically decreases for spontaneous speech. This is due to the fact that
spontaneous speech and read speech are significantly different acousti-
cally as well as linguistically. This paper reports analysis and recognition
of spontaneous speech using a large-scale spontaneous speech database
“Corpus of Spontaneous Japanese (CSJ)”. Recognition results in this
experiment show that recognition accuracy significantly increases as a
function of the size of acoustic as well as language model training data
and the improvement levels off at approximately 7M words of training
data. This means that acoustic and linguistic variation of spontaneous
speech is so large that we need a very large corpus in order to encom-
pass the variations. Spectral analysis using various styles of utterances
in the CSJ shows that the spectral distribution/difference of phonemes
is significantly reduced in spontaneous speech compared to read speech.
Experimental results also show that there is a strong correlation between
mean spectral distance between phonemes and phoneme recognition ac-
curacy. This indicates that spectral reduction is one major reason for the
decrease of recognition accuracy of spontaneous speech.

1 Introduction

State-of-the-art speech recognition technology can achieve high recognition ac-
curacies for read texts or limited domain spoken interactions. However, the ac-
curacy is still rather poor for spontaneous speech, which is not as well structured
acoustically and linguistically as read speech [1, 2]. Spontaneous speech includes
filled pauses, repairs, hesitations, repetitions, partial words, and disfluencies. It
is quite interesting to note that, although speech is almost always spontaneous,
until recently speech recognition research has focused primarily on recogniz-
ing read speech. Spontaneous speech recognition as a specific research field has
only recently emerged about 10 years ago within the wider field of automatic
speech recognition (e.g. [3-7]). Effectively broadening the application of speech
recognition depends crucially on raising recognition performance for spontaneous
speech.



In order to increase recognition performance for spontaneous speech, it is
necessary to build acoustic and language models specific to spontaneous speech.
Our knowledge of the structure of spontaneous speech is currently insufficient
to achieve necessary breakthroughs. Although spontaneous speech phenomena
are quite common in human communication and may increase in human ma-
chine discourse as people become more comfortable conversing with machines,
analysis and modeling of spontaneous speech are only in the initial stages. It is
widely well known that spectral distribution of continuously spoken vowels or
syllables is much smaller than that of isolated spoken vowels or syllables, which
is sometimes called spectral reduction. Similar reduction has also been observed
for spontaneous speech in comparison with read speech (e.g. [8,9]). However,
as of yet no research has been conducted using a large spontaneous database
nor on the relationships between the spectral reduction and spontaneous speech
recognition performance.

The next section in this paper overviews our spontaneous speech project
focusing on the large-scale Japanese spontaneous speech corpus, and reports
results of speech recognition experiments using the spontaneous speech corpus,
including several analyses on speech recognition errors. Then, the paper reports
investigations on spectral reduction using cepstral features that are widely used
in speech recognition, based on the spontaneous speech corpus. In the following
section, the difference of distances between each pair of phonemes in spontaneous
speech and that in read speech is analyzed, and the relationship between the
phoneme distances and phoneme recognition performance in various speaking
styles is investigated.

2 “Spontaneous Speech: Corpus and Processing
Technology” Project

2.1 Overview of the Project

A 5-year Science and Technology Agency Priority Program entitled “Sponta-
neous Speech: Corpus and Processing Technology” was conducted in Japan from
1999 to 2004 [1], and accomplished the following three major objectives.

1. A large-scale spontaneous speech corpus, Corpus of Spontaneous Japanese
(CSJ), consisting of roughly 7M words (morphemes) with a total speech
length of 650 hours has been built [10,11].

2. Acoustic and language modeling for spontaneous speech recognition and un-
derstanding using linguistic as well as para-linguistic information in speech
was investigated [2].

3. Spontaneous speech recognition and summarization technology was investi-
gated.

2.2 Corpus of Spontaneous Japanese (CSJ)

Mainly recorded in the Corpus of Spontaneous Japanese (CSJ) are monologues
such as academic presentations (AP) and extemporaneous presentations (EP) as



Table 1. Contents of the CSJ

Monologue/|Spontaneous/

Dialogue Read Hours

Type of speech 7 speakers|# files

Academic
presentations (AP)
Extemporaneous
presentations (EP)

838 1006 | Monolog Spont. 299.5

580 1715 | Monolog Spont. 327.5

Interview on AP *(10) 10 Dialog Spont. 2.1
Interview on EP *(16) 16 Dialog Spont. 34
Tafili‘aj’;:]f:ed *(16) | 16 | Dialog Spont. | 3.1
Free dialogue *(16) 16 Dialog Spont. 3.6
Reading text *(244) 491 Dialog Read 14.1
Reading transcriptions| *(16) 16 Monolog Read 5.5
*Counted as the speakers of AP or EP Total hours | 658.8

shown in Table 1. AP contains live recordings of academic presentations in nine
different academic socicties covering the fields of engineering, social science and
humanities. EP is studio recordings of paid layman speakers’ speech on every-
day topics like “the most delightful memory of my life” presented in front of a
small audience and in a relatively relaxed atmosphere. Therefore, the speaking
style in EP is more informal than in AP. Presentations reading text have been
excluded from AP and EP. The EP recordings provide a more balanced represen-
tation of age and gender than the AP. The CSJ also includes a smaller database
of dialogue speech for the purpose of comparison with monologue speech. The
dialogue speech is composed of an interview, a task oriented dialogue, and a
free dialogue. The “reading text” in the table indicates the speech reading nov-
els including dialogues, and the “reading transcriptions” indicates the speech
reading transcriptions of APs or EPs by the same speaker. The recordings were
manually given orthographic and phonetic transcription. Spontaneous speech-
specific phenomena, such as filled pauses, word fragments, reduced articulation
or mispronunciation, and non-speech events like laughter and coughing were also
carefully tagged. The “reading text” speech is not used in the analysis in this

paper.

One-tenth of the utterances, hereafter referred to as the Core, were tagged
manually and used for training a morphological analysis and part-of-speech
(POS) tagging program [12] for automatically analyzing all of the 650-hour
utterances. The Core consists of 70 APs, 107 EPs, 18 dialogues and 6 read
speech files (speakers). They were also tagged with para-linguistic/intonation
information, dependency-structure, discourse structure, and summarization. For
intonation labeling of spontaneous speech, the traditional J ToBI method [13]
was extended to X_JToBI [14], in which inventories of tonal events as well as
break indices were considerably enriched.
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Fig. 1. Ratios of filled pauses (F), word fragments (D), and reduced articulation or
mispronunciation (W) in AP, EP, dialogue, and read transcription speech

Figure 1 shows mean values of the ratio of disfluencies, specifically filled
pauses (F), word fragments (D), and reduced articulation or mispronunciation
(W), to the total number of words included in AP, EP, dialogues (interviews, task
oriented dialogues and free dialogues), and utterances reading the transcription
of AP (read transcription speech), respectively. These results show that approx-
imately one-tenth of the words are disfluencies in the spontaneous speech in the
CSJ, and there is no significant, difference among the overall ratios of disfluen-
cies in terms of AP, EP or dialogues. It is also observed that the ratio of F is
significantly higher than that of D and W. The read transcription speech still
include disfluencies, since they are reading transcriptions of a subset of AP.

3 Progress Made and Difficulties Encountered in
Spontaneous Speech Recognition

3.1 Test Sets for Technology Evaluation

In order to evaluate the spontaneous speech recognition technology, three test
sets of presentations have been constructed from the CSJ so that they well repre-
sent the whole corpus with respect to various factors of spontaneous speech [15].
The analysis by Shinozaki et al. [16] (see Section 3.3) concluded that speaking
rate (SR), out-of-vocabulary (OOV) rate (OR) and repair rate (RR) were three
major speaker attributes highly correlated with accuracy. Other factors mainly
depended on one or more of these three. For example, word perplexity (PP) was
also highly correlated with the accuracy, but if its correlation with the OR was
removed, we found actually that the correlation between PP and accuracy was
significantly reduced. However, OR is intrinsically dependent on vocabulary and
is thus variable when the lexicon is modified. On the other hand, the difference



of PPs among speech data is generally more stable, even when the language
model is revised. Therefore, we decided to take into account PP instead of OR,
in combination with SR and RR, in the test-set selection.

Since the speaking styles and vocabularies of AP and EP are significantly
different, we set up respective test sets. In addition, considering the fact that
most of the AP presentations were given by male speakers, we set up two sets
for the academic category: a male-only set and a gender-balanced set. Thus,
we have three test sets, each of which consists of 10 speakers: male speakers
AP, gender-balanced AP, and gender-balanced EP. The remaining AP as well
as EP presentations, excluding those having overlap with the test sets in terms
of speakers, were set up as training data (510 hours, 6.84 M words). The utter-
ances were digitized by 16 kHz and converted into a sequence of feature vectors
consisting of MFCC (Mel-frequency cepstrum coefficients), AMFCC and Alog-
energy features, using a 25 ms-length window shifted every 10 ms. Benchmark
results of speech recognition using these three test sets have also been presented
in our previous paper [15].

3.2 Effectiveness of Corpora

By constructing acoustic and language models using the CSJ, recognition errors
for spontaneous presentation were reduced to roughly half compared to mod-
els constructed using read speech and written text [1,3]. Increasing the size of
training data for acoustic and language models has decreased the recognition
error rate (WER: word error rate) as shown in Figures 2 and 3 [17]. They show
the results averaged over the three test sets. Figure 2 indicates WER, adjusted
test-set perplexity (APP) [18] and OOV rate (OR), as a function of the size
of language model training data with the condition that the acoustic model is
constructed using the whole training data set (510 hours). The adjusted per-
plexity was used, since it normalizes the effect of the reduction of OOV rate
on the perplexity according to the increase of training data size. On the other
hand, Figure 3 shows WER as a function of the size of acoustic model training
data, when the language model is made using the whole training data set (6.84M
words).

By increasing the language model training data size from 1/8 (0.86M words)
to 8/8 (6.84M words), the WER, the perplexity and the OOV are relatively
reduced by 17%, 19%, and 62%, respectively. By increasing the acoustic model
training data from 1/8 (64 hours) to 8/8 (509 hours), the WER is reduced by
6.3%. The best WER of 25.3%, obtained by using the whole training data set
for both acoustic and language modeling, shown at the extreme right condition
in Figure 3, is 2.9% lower in the absolute value than that shown in Figure 2.
This is because the former experiment of Figure 3 combined AAMFCC and
AAlog-energy with the three features of MFCC, AMFCC and Alog-energy which
were used in the experiment of Figure 2. All these results show that WER
is significantly reduced by an increase of the size of training data and almost
saturated by using the whole data set. This strongly confirms that the size of
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Fig. 2. Word error rate (WER), adjusted test-set perplexity (APP) and out-of-
vocabulary (OOV) rate (OR) as a function of the size of language model training
data
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Fig.3. WER as a function of the size of acoustic model training data

the CSJ is meaningful in modeling spontaneous presentation speech using the
standard model training strategies.

3.3 Analysis of Spontaneous Speech Recognition Errors

Individual differences in spontaneous presentation speech recognition perfor-
mances have been analyzed using 10 minutes from presentations given by 51 male
speakers, for a total of 510 minutes [16]. Seven kinds of speaker attributes were
considered in the analysis. They were word accuracy (Acc), averaged acoustic
frame likelihood (AL), speaking rate (SR), word perplexity (PP), out of vocab-
ulary rate (OR), filled pause rate (FR) and repair rate (RR). The speaking rate,
defined as the number of phonemes per second, and the averaged acoustic frame
likelihood were calculated using the results of forced alignment of the reference



tri-phone labels after removing pause periods. The word perplexity was calcu-
lated using trigrams, in which prediction of out-of-vocabulary (OOV) words was
not included. The filled pause rate and the repair rate were the number of filled
pauses and repairs divided by the number of words, respectively.

Analysis results indicate that the attributes exhibiting a real correlation with
the accuracy are speaking rate, OOV rate, and repair rate. Although other at-
tributes also have correlation with the accuracy, the correlation is actually caused
through these more fundamentally influential attributes.

The following equation has been obtained as a result of a linear regression
model of the word accuracy with the six presentation attributes.

Acc=0.12AL — 0.88SR — 0.020PP — 2.20R + 0.32FR—-3.0RR+95. (1)

In the equation, the regression coefficient for the repair rate is -3.0 and the
coefficient for the OOV rate is -2.2. This means that a 1% increase of the repair
rate or the OOV rate corresponds respectively to a 3.0% or 2.2% decrease of
word accuracy. This is probably because a single recognition error caused by a
repair or an OOV word triggers secondary errors due to linguistic constraints.
The determination coefficient of the multiple linear regression is 0.48, which is
significant at a 1% level. This means that roughly half of the variance of the
word accuracy can be explained by the model.

4 Spectral Space Reduction in Spontaneous Speech and
Its Effects on Speech Recognition Performances

4.1 Spectral Analysis of Spontaneous Speech

Results of recognition experiments using the spontaneous presentations in the
CSJ clearly show that sponianeous speech and read speech are acoustically differ-
ent. In order to clarify the acoustical differences, spectral characteristics of spon-
taneous speech have been analyzed in comparison with that of read speech [19].
Utterances with various speaking styles (speaking types) in the CSJ, such as
AP, EP, utterances reading the transcription of AP (read transcription speech),
and dialogues, were used in the analysis. The dialogue utterances consisted of
interviews on AP, interviews on EP, task dialogues, and free dialogues. In or-
der to avoid the effect of individual differences, utterances in different styles
by the same five male and five female speakers were compared. Since not only
the speakers but also the text were identical for the reading of the transcribed
speech and the original AP utterances, very precise comparative analysis could
be performed.

These utterances were segmented by silences with durations of 400 ms or
longer. If the length of the segmented unit was shorter than 1 sec, it was merged
with the succeeding unit. The segmented utterances are hereafter called “utter-
ance units”.



Table 2. Japanese phonemes

Vowel |/a,i,u,e,o0,a:,i:,u:,e:,o0:/ |
/w,y,r,p,t,k,b,d,g,j,ts,ch,
z,s,sh,h,f,N,N:,m,n/

Consonant

Table 3. Total number of phoneme samples for each speaker and each speaking style

SP‘I*;ker Read speech| AP | EP |Dialogue
Male | M1 7,420 | 7,371| 5,213| 9,915
M2 10,768  |10,815| 6,000| 14,489

M3 12,118 [12,211] 8,525| 17,616

M4 93,154  |23,208] 8,615| 19,892

M5 8,508 | 8,651 (11,518 29,862

Female| F1 12,162 |12,071|10,119 25,428
F2 7,843 | 7,757 | 7,206 | 20,141

F3 11,383 |11,360| 4,837| 17,044

Fd 8111 | 8,038 8,232 20,999

F5 17,797  |17,848| 9,508 | 22,083

The whole set of 31 Japanese phonemes, consisting of 10 vowels and 21
consonants, are listed in Table 2. The mean and variance of MFCC vectors for
each phoneme in various speaking styles were calculated to analyze the spectral
characteristics of spontaneous speech as follows.

1. 39-dimensional feature vectors, consisting of 12-dimensional MFCC, log-
energy, and their first and second derivatives, were extracted from utterances
using a 25 ms-length window shifted every 10 ms. The CMS (cepstral mean
subtraction) is applied to each utterance unit.

2. A mono-phone HMM with a single Gaussian mixture was trained using ut-
terances of every combination of phonemes, speakers, and utterance styles.
Every HMM had a left-to-right topology with three self-loops.

3. The mean and variance vectors of the 12-dimensional MFCC at the second
state of the HMM were extracted for each phoneme and used for the analysis.

4.2 Projection into the PCA Space

Table 3 shows the total number of phoneme samples used in this experiment
for each speaker and each speaking style. Each presentation has a duration of
10 minutes in average. Figure 4 shows examples of the distribution of mean
MFCC vectors of all the vowels and consonants, projected into 2-dimensional
vector spaces constructed by the Principal Component Analysis (PCA), for the
dialogue and read speech by two speakers (left: F5, and right: M5), respectively.
These speakers were selected since their voices have relatively large perceptual
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Fig. 4. Examples of distributions of mean MFCC vectors of all the phonemes projected
into the 2-dimensional PCA space for dialogue and read speech by two speakers. The
arrows indicate the deviations of vowel and consonant centers from the read speech to
the dialogue speech

differences between the two speaking styles. In the figure,  and y axes indicate
the first and the second PCA vectors, respectively. The two arrows in each figure
indicate deviations of vowel and consonant centers from the read speech to the
dialogue speech.

The results clearly show that the distribution of mean MFCC vectors of
dialogue speech is closer to the center of the distribution of all the phonemes
than the distribution of read speech. In other words, the size of spectral space for
the phonemes in spontaneous speech is smaller compared to that of read speech.

4.3 Reduction Ratio of the Distribution of Phonemes

In order to quantitatively analyze the reduction of the distribution of phonemes,
Euclidean norms/distances between the mean vector of each phoneme and the
center of the distribution of all phonemes, that is the vector averaged over all
the phonemes, were calculated, and the ratio of the distance for spontaneous
speech (presentations and dialogues) to that of read speech was calculated for
each phoneme as follows.

() — Avip(X)]]
reds(X) = (B) ~ Avlap (B @

Here p,(X) is the mean vector of a phoneme p uttered with a speaking style X,
tp(R) is the mean vector of a phoneme p of read speech, and Av indicates the
averaged value.

Results using the mean MFCC vector of the second state of the HMM with
a single Gaussian mixture as the mean vector for each phoneme are shown in
Figure 5.
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The figure shows the reduction ratios red,(X) averaged over all the speakers,
separately for AP, EP, and dialogues. /N:/ and /ch/, which rarely occurred in
the utterances listed in Table 3, were not used in this analysis. The condition
of red,(X) = 1 is indicated by a thick line. The dialogues include interviews on
AP and EP, task dialogues, and free dialogues. Results in the figure show the
reduction of the MFCC space for almost all the phonemes in the three speaking
styles, and this is most significant in dialogue utterances.

Figure 6 shows mean reduction ratios for vowels and consonants, respectively,
for each speaking style. These results show that the reduction of the distribution
of phonemes in the MFCC domain in comparison with that of read speech is
observed for all the speaking styles, and most significantly for dialogue speech.

4.4 Reduction of Distances between Phonemes

In the previous section, the reduction of MFCC space was measured by the ratio
of the distance between each phoneme and the phoneme center in spontaneous
speech to that in read speech. In this section, the reduction of cepstral distance
between each phoneme pair is measured. The Euclidean distance using the mean
MFCC vector of each phoneme and the Mahalanobis distance, which takes into
account the variances, were measured. The definition of Mahalanobis distance
D;;(X) between phoneme i and j spoken with a speaking style X can be written
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as follows.

K
K (pin(X) — pix(X))?
Di(X) = | 5= : (3)

K K
Yok (X) + ) oh(X)
k=1 k=1

Where, K is the dimension of an MFCC vector (K = 12). u(X) and o2 (X)
are the kth dimensional elements of the mean and the variance vector of MFCC
for phoneme i uttered with a speaking style X. In the case of the Euclidean
distance between phonemes 4 and j, the denominator in the above formula (3)
is set to a constant value.

Five males and five females were randomly selected from the CSJ for this
experiment. The total number of phoneme samples for each speaking style was
45,242 (read speech), 80,095 (AP), 55,102 (EP), or 56,583 (dialogues). The read
speech set in the CSJ includes various kinds of “reading transcriptions” and
“reading novels including dialogues”. The dialogue set includes variation of “in-
terview” and “free dialogue”. Therefore, speech materials of read speech and
dialogues for this experiment were selected so as to represent as many variations
of speaking styles as possible. Speech materials of AP and EP were randomly
selected from the test-set data of CSJ designed for speech recognition experi-
ments.

Figure 7 shows the cumulative frequency of distances between phonemes
for each speaking style. The left-hand side of the figure shows the case using
the Euclidean distance, whereas the right-hand side shows the case using the
Mahalanobis distance. The = axis indicates the Euclidean or the Mahalanobis
distance, and the y axis indicates the cumulative frequency. These results clearly
show that the distances between phonemes decrease as the spontaneity of the
utterances increases (D > EP > AP > R). The Wilcoxon’s rank order test
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Fig. 7. Distribution of distances between phonemes

with a significance level of p-value < 0.01 shows that the distributions of each

speaking style are statistically different from each other, except between AP and
EP.

4.5 Relationship between Phoneme Distances and Phoneme
Recognition Performance

Differences of the size of distribution of between-phoneme distances are expected
to be related to the phoneme recognition performance for various speaking styles.
This section investigates the relationship between the between-phoneme dis-
tances and the phoneme recognition accuracy using utterances by many speak-
ers. Mono-phone HMMs with a single Gaussian mixture for phoneme recogni-
tion were trained for each speaking style, using utterances by 100 males and
100 females for AP and 150 males and 150 females for EP. These speakers were
randomly selected from the CSJ, and the total number of phoneme samples were
approximately two million for AP and EP, respectively. A 38-dimensional feature
vector was used as the acoustic feature. The same data as used in Section 4.4 were
used for the evaluation experiment. A phoneme network with di-phone proba-
bilities was used as a language model for recognition. The insertion penalty was
optimized for each speaking style.

Figure 8 shows the relationship between the mean phoneme distance and
the phoneme recognition accuracy. The left-hand side of the figure shows the
case using Euclidean distance and the right-hand side shows the case using Ma-
halanobis distance as the distance between phonemes for each speaking style.
Correlation coefficients belween the mean phoneme distance and the phoneme
recognition accuracy are 0.93 in the case using Euclidean distance and 0.97 in
the case using Mahalanobis distance. The lines in Figure 8 indicate the regres-
sion over the four points. These results clearly show a strong correlation between
mean phoneme distance and phoneme accuracy. This means that the phoneme
recognition accuracy can be estimated by the mean phoneme distance. That
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is, the reduction of the Euclidean distances between phonemes is a major fac-
tor contributing to the degradation of spontaneous speech recognition accuracy.
It can also be concluded that the relationship between the phoneme distance
and the phoneme recognition accuracy becomes slightly more significant if the
variances of phoneme spectra are also taken into account.

5 Conclusion

In order to increase recognition accuracy for spontaneous speech, it is necessary
to build acoustic and language models using spontaneous speech corpora. It was
found through our recognition experiments for spontaneous academic presen-
tations (AP) in the Corpus of Spontaneous Japanese (CSJ), that recognition
accuracy increases as the training data size increases even up to 510 hours or
6.84M words for both acoustic and language model training. This indicates that
spontaneous speech is so variable that it needs a huge corpus to encompass the
variations. However, it is impossible to collect a huge corpus for every new ap-
plication. Therefore, it is important to clarify general features of spontaneous
speech and establish a mechanism for adapting a task-independent model to a
specific task using task-specific features [3,20-22].

By comparing spontaneous speech and speech reading a transcription of the
spontaneous speech, it was clarified that spectral distribution of spontaneous
speech is significantly reduced compared to that of read speech. Although this
was true for all the spontaneous speech analyzed in this paper, that is, aca-
demic presentations (AP), extemporaneous presentations (EP), and dialogues,
the reduction was most significant for dialogues, which are obviously more spon-
taneous than the other styles. It has also been found that the more spontaneous
the speech, the smaller the distances between phonemes become, and that there
is a high correlation between the mean phoneme distance and the phoneme
recognition accuracy. In summary, spontaneous speech can be characterized by
the reduction of spectral space in comparison with that of read speech, and this
is one of the major factors contributing to the decrease in recognition accuracy.
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Our future research includes analysis over wider range of spontaneous speech
using utterances other than those included in the CSJ. Broadening speech recog-
nition applications depends crucially on raising the recognition performance of
spontaneous speech. Although we have clarified spectral reduction and its effects
on spontaneous speech recognition, it is not yet clear how we can use these results
for improving recognition performances. Creating methods for adapting acoustic
models to spontaneous speech based on the results obtained in this research is
one of our future targets.

This paper has focused on acoustic properties of spontaneous speech. Since
there exist significant diffcrences in linguistic characteristics between sponta-
neous speech and read speech, our future research includes investigating linguis-
tic characteristics of spontaneous speech and their effects on speech recognition
performances. How to incorporate filled pauses, repairs, hesitations, repetitions,
partial words, and disfluencies still poses a big challenge.

The large-scale spontaneous speech corpus, CSJ, used in the experiments re-
ported in this paper, will be stored with XML format in a large-scale database
system developed by the 215t Century COE (Center of Excellence) program
“Framework for Systematization and Application of Large-scale Knowledge Re-
sources” at Tokyo Institute of Technology so that the general population can
easily access and use it for research purposes [23]. We hope international collab-
oration in building large-scale spontaneous speech corpora as well as analysis and
modeling of spontaneous speech based on the corpora will advance the progress
of speech recognition technology.
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