
論文 / 著書情報
Article / Book Information

Title Reliability and Performance Estimation for Enriched WS-SAGAS

Author Neila Ben Lakhal, Takashi Kobayashi, Haruo Yokota

Journal/Book name IEEE Proc. of International Workshop on Challenges in Web
Information Retrieval and Integration (WIRI2005), Vol. , No. , pp. 55-64

Issue date 2005, 4

DOI 10.1109/WIRI.2005.34

URL http://www.ieee.org/index.html

Copyright (c)2005 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Reliability and Performance Estimation for Enriched WS-SAGAS

Neila Ben Lakhal†, Takashi Kobayashi‡ and Haruo Yokota†‡
†Tokyo Institute of Technology, Department of Computer Science

‡Tokyo Institute of Technology, Global Scientific Information and Computing Center
2-12-1 Oh-Okayama, Meguro-ku Tokyo, 152-8552 Japan

neila@de.cs.titech.ac.jp,{tkobaya, yokota}@cs.titech.ac.jp

Abstract

Over the last couple of years, the web services composi-
tions paradigm has been gathering a considerable momen-
tum to grasp at the opportunity of becoming the most nat-
ural solution for autonomous and heterogeneous applica-
tions integration.

In this paper, we advocate that we have yet to be con-
cerned about the reliability and performance levels that
the web services compositions will exhibit upon execution,
which is still an ongoing research problem finding notable
interest. Focusing on this issue, we propose to estimate the
reliability and performance of web services compositions.
We concentrate on one important aspect that has received
little attention so far: the consideration of the failures reper-
cussions on the overall composition execution performance.

Specifically, our targets are twofold. Firstly, we propose
to enrich WS-SAGAS with a new set of advanced aggre-
gation patterns so that it fits with the inherent business
processes complexity and thereby it allows to specify, as
web services compositions, any business process no mat-
ter how it turns out to. Secondly, we propose to estimate the
reliability and performance of each of these patterns, and
this, in both, correct and faulty situations.

Our enriched WS-SAGAS model ameliorates consider-
ably the chances to acquire more plausible estimations of
the reliability and performance because of its failure aware-
ness. Moreover, analyzing these estimations helps to inves-
tigate the reasons that may lay behind these failures and in-
deed to contribute noticeably to acquire more reliable com-
positions execution with high performance level.

1. INTRODUCTION

One of the most spectacular characteristics of the
few past years is the ubiquitous spread of heteroge-
neous and autonomous applications cooperating in com-
plex cross-organizational business processes.

Ensuring a high-performance-level of execution of such
processes is a call to challenge the integration of disparate
systems and surmount their inherent incompatibilities.

So far, the web services compositions paradigm rose to
the occasion and its efficiency in facilitating such applica-
tions integration has been widely demonstrated. It is rapidly
gathering considerable momentum to grasp at the opportu-
nity of becoming the most natural solution for such appli-
cations integration. Behind the scenes, its key enablers are,
building on a set of widely recognized standards, using ever-
present protocols, and finally showing an extraordinary ca-
pability to glue any (disparate) systems together.

To date, many solutions were proposed to aggregate indi-
vidual web services to derive from them new compositions,
enabled even to encapsulate complex business processes un-
derpinning logic. However, to enforce that such processes
reliably serve their purpose, comparing the semantics of
their interleaved services and checking their ports compati-
bility is no longer enough. We advocate that we have yet to
be concerned about achieving a high-level Quality of Ser-
vice(QoS) in general, and a high-level of performance, spe-
cially at the the composition execution level, which is still
an ongoing research problem finding notable interest.

The notion of QoS is broad and is applied to many ar-
eas. Depending on its area of application, its definition
varies. Some defines it as”a set of user-perceivable at-
tributes, which describes a service and the way it is per-
ceived” [1][2]. We are not concerned with this QoS since
it has been widely addressed and was the subject of con-
siderable research efforts in web services compositions. So
far, several studies focused on the dynamic selection of the
provider [3][4][5] and on semantic services descriptions to
improve the dynamic selection[6]. These studies are classi-
fied under the umbrella of maximizing user’s satisfaction.

A more appropriate definition of the QoS with which we
deal in our present work is”the system property which con-
sists of a set of quality requirements on the collective be-
havior of one or more objects, as the information transfer
rate, the latency, the system failure probability, etc.”[1][7].

Concerned with enhancing the reliability and availabil-
ity dimensions of the web services compositions perfor-
mance in particular, and its QoS in general, we have pro-
posed in a previous work,WS-SAGAS, a transaction model
for web services compositions reliable specification[8][9],
andTHROWS (Transaction Hierarchy for Route Organiza-
tion of Web Services), a distributed architecturefor highly
available execution of web services compositions[10][11].

In this paper, we focus on another issue related with the
qualitative aspect of web services compositions. In particu-
lar, we propose to estimate the reliability and performance
of web services compositions and to concentrate on one im-
portant issue that has received little attention so far, which
is considering the failure repercussions on the composition
execution performance estimations.

Specifically, our targets are twofold. First, we propose to
enrich WS-SAGAS with a new set of advanced aggregation
patterns so that it fits with the inherent business processes
complexity and thereby allows to specify, as composition,
any process no matter how it turns out to. Second, we pro-
pose to characterize, estimate and analyze the performance
of each of these patterns,in terms ofReliability andExecu-
tion Time, in correct and faulty situations.

Contrary to other proposed approaches -also character-
izing these two dimensions- where only the compositions
”eternal” correct execution were considered and where the
failure (detection and recovery) was not taken into consid-
eration in none of the estimated metrics, we advocate that
such performance estimations are too optimistic and far
from the actual situation. This ensues from our belief that
the correct execution does not reflect always the real sit-
uation of any system as reliable as it its said to be. Usu-
ally, failures (detection and recovery) contribute more or
less in the effective performances of any system, speciallyin
the web services context and their inherent tendency to fail
rather easily (relatively to other computing components).

As for the reliability dimension characterization, we in-
troduce a new concept, theReliability Tendency(RT), which
builds mainly on the concepts of element’sState(S), States
Tendency Set(STS), andTerminal States Set. TheReliability
Tendencyupholds the idea that from one state to another, the
reliability contributions vary. TheState Tendencywould al-
low to approximate the failures locations (e.g., the element’
with State Tendency Setcomprising theFailed state).

In estimating theExecution Timedimension, we intro-
duce the notion ofProbable Execution TimeandOptimistic
Execution Time, where the former considers all the pos-
sible system states (i.e., correct/faulty/recoverable/none
recoverable execution), and where the latter is only lim-
ited to the correct execution of WS-SAGAS. Distinguish-
ing between these two variants of the time dimension al-
lows us to provide more accurate estimations.

Finally, since a web services composition is a collabora-
tion of elements, we propose to provide performance esti-
mations of each element. Later, we derive the performance
of the overall composition, following the newly defined ag-
gregation patterns in the Enriched WS-SAGAS.

This paper is structured as follow. Section 2 describes
our motivations and our contributions. Section 3 discusses
some related work. Finally, section 4 concludes our present
work and gives and outlook of our future directions.

2. ENRICHED WS-SAGAS

2.1. PRELIMINARIES

To cope with web services compositions reliability and
availability issue, we have proposed in a previous work,WS-
SAGASand THROWSarchitecture[8]-[11]. In a nutshell,
our previous proposal most prominent features are:

• WS-SAGAS transaction model specifies the web ser-
vices composition as a hierarchy of arbitrary-nested
transactions. These transactions execution is provided
with state capturing, execution retrial and compensa-
tion mechanisms;

• In WS-SAGAS, we defined a web services composi-
tion (WSC) as an orchestration ofn elements(Ev

i)
noted{Ev

1 , Ev
2 ...Ev

n} . An elementhas astate(Si) and
a vitality degree(notedEv

i for vital and Ev̄
i for not

vital). According to the considered nesting level, the
same element could be either assimilated to an atomic
element or to a composition of elements;

• The state of an element (vital or not-vital indepen-
dently notedEi), notedSi, is exclusively one of the
followings:Waiting, Executing, Failed, Aborted, Com-
mitted or Compensated;

• THROWS architecture applies a peer-to-peer execu-
tion pattern where the composition execution control
is distributed among dynamically discovered engines.
An engine (notedei) is attached to an involved web
service and is allocated to an elementEi at runtime.
Once allocated, the engine is in charge of the web
service invocation, its execution context communica-
tion/update(.e., input and output variables), its execu-
tion control delegation or completion etc. On each en-
gine, theCurrent Execution Progress (CEP)and the
Candidate Engines List (CEL)are locally stored.

• CEP (WSCc) keeps track of the web services compo-
sition WSCc execution progress. When an element is
executed by an engine, every change in that element’s
state is reflected onCEP;

• CEL(Ei)contains all the candidate engines poten-
tially enabled to executeEi. Every engine, after com-
mitting the execution of its allocated element, it gener-
ates the CEL of its direct successor(s).

2.2. MOTIVATIONS AND CONTRIBUTIONS

In this paper, we propose in our model to map the perfor-
mance of web services compositions, depicted asEnriched
WS-SAGAS, to estimations of two dimensions theReliabil-
ity andExecution Time, the more likely performance aspects
to be influenceable by failures. In this work, we limited our
model to only two performance-related dimensions. How-
ever, our model can be extended in the future with other as-
pects.

The estimation of reliability and execution time issue, in
web services context, is with little previous work. Part of
the proposed work is oriented toward quality measurements
of web services compositions, but without any failure con-
sideration.

Considering theExecution Timeaspect, [12][13] defined
the execution time taken by a single web service invocation
with three constituents:

• Service Time is to perform the service task;

• Message Delay Time is the time taken by the
SOAP messages to be sent/received and

• Waiting Time is the web service invocation delay.

Still, considering only these three constituents in defining
an element execution time is not enough since this definition
considers only the case of mapping one web service-to-one
element. Moreover, it is rather optimistic since it doesn’t
take into account any eventual failure (information and re-
covery time). Indeed, we assume that an effective execution
of any element by any web service in actual situation is in-
herently error-prone.

OurEnriched WS-SAGAS modelbuilds on the following
definitions to estimate the reliability and performance:

A- RELIABILITY-RELATED DEFINITIONS

DEFINITION A.1 Let Ei andEj two elements from a
compositionWSCc. If Ei execution can be moretimesat-
tempted thanEj , thenEj is said totend to be more reli-
able thanEj , since it has more chances to be retried and
potentially reach theCommittedstate. We define this no-
tion as the element’sRetriability. Each element’sretriabil-
ity is function of itsCEL cardinality (noted|(CEL(Ei))|).

DEFINITION A.2 Each elementEi has a Termi-
nal State(notedTS) with which each invocation is termi-
nated. Afterm invocations, for each element, aTerminal
States Set(noted TSS(Ei)) is formed. The cardinal-
ity of TSS(Ei) verifies Equation(1).

1 ≤ |TSS(Ei)| ≤ 5 (1)

Waiting(0)

start

Generate (CEL(Ei))

[CEL (Ei) <> Empty]

Ei.engine= ei1

Ei.state=Executing

Update(CEP)

[start_signal received]

Execute(Ei,ei1)

Executing

Committed

Failed

Aborted

error()

[failure detected]

Ei.state= Failed

Update (CEP)

Propagate (failure)

Commit()

[Finish_Signal received]

Ei.state=Committed

Update(CEP)

Finish()

Abort()

[abort_request received]

Ei.state=Aborted

Update(CEP)

Compensated

end

[not-vital]

Resume(Successors)

Finish(Ei)
Compensate()

[compensate_request received]

E i.state= Compensated

Update(CEP)Finish()

Generate(CEL)

Finish()

[vital]

Allocate()

[CEL(Ei)<>empty]

Ei.engine= ei2

Ei.state=Executing

Update(CEP)

Execute(Ei,ei2)
[vital]

Allocate()

[CEL(Ei)=Empty]

Back_Recovery()

Finish()
Finish()

(-ε)

(-ε)

(+ε)

(+δ)

(-δ)

Figure 1. State Transition Diagram with
States Reliability Contributions

DEFINITION A.3 After m invocations ofEi, at least
one state, among the five different states{Waiting, Failed,
Aborted, Committed,Compensated} tends to have the
biggest occurrence number as aTerminal State. We intro-
duce the notion ofState Tendency Set(noted STS(Ei)),
as the state(s) that has(have) the biggest occurrence num-
ber after m invocations.STS(Ei) contains the set of
state(s) that are included within theTSS, and which have
the biggest number of occurrences after an element is exe-
cutedm times:

STS(Ei) = max
State∈TSS

{
m∑

1

State(occu(State))} (2)

With: STS(Ei) ⊆ TSS(Ei) occ(State): the number
of times(afterm invocations)Ei execution was terminated
with the stateState.

DEFINITION A.4 We define theState Reliability Contri-
bution(notedSRC) as how the reliability of an element is
influenced by itsTS. From one state to another, the state’s
contribution in the reliability differs.

For instance, the stateFailed would decrease the reli-
ability contrary to theCommittedstate which contributes
positively in increasing the reliability. Similarly, theWait-
ing state is considered as neutral since it doesn’t have any
effect on the reliability. As for theExecutingstate, since it
is one step toward the fulfillment of an element, its relia-
bility level is in between theCommittedandWaitingstate.
Finally, theCompensatedandAbortedstates are performed
only as a result of failure handling. Thus they have the same
negative contribution, in between the contributions ofWait-
ing state and theFailed state.

Indeed, we assume that a transition from one state to an-
other state makes theState Reliability Contributionstronger
if is toward reaching theCommitted state and it con-
tributes negatively and makes theState Reliability Contri-
butionweaker if it is toward theFailed state.

(Figure.1) depicts the state transition diagram that we
have defined in WS-SAGAS execution following THROWS
architecture. The diagram is enriched with each element’s
SRC, written between () after each state. Initially, eachSRC
can be allocated values based on the designers judgement.

DEFINITION A.5 The notion ofReliability Tendencyfor
an elementEi (notedRT (Ei)) is derived from the previous
definitions as in Equation(3). It defines the reliability rate of
each element, afterm invocations.

RT (Ei) =

∑
State∈ STS(Ei)

(ST (State) ∗ SC(State))

|STS(Ei)|
(3)

We emphasize here that we introduced this appellation
of Reliability Tendency(equivalent toReliability in other
work) because we are deeply convinced that in the web
services context, fully precise reliability measurementsare
very difficult to acquire, in view of its dynamism. Estimate
the rate to which the reliability will tend is more plausible.

DEFINITION A.6 TheReliability Tendencyof a web ser-
vices compositionWSCc, comprisingn elements, is de-
rived from its elements respectiveRT as follows:

RT (WSCc) =

∑
0≤i≤n (RT (Ei))

n
(4)

B- EXECUTION-TIME-RELATED DEFINITIONS

DEFINITION B.1 We define theOptimistic Execution
Timeof an elementEi from a compositionWSCc (noted
T (Ei)opt) as the execution time of thedynamically-mapped
web service at runtime toEi. This definition considers only
the best case whereEi is mapped to a service which suc-
ceeds in its execution.

We remind here that anyEi can be mapped at runtime
to more than one web service, at most the cardinality of
CEL(Ei). We assume thatEi was executed byq engines
(q ≤ |CEL(Ei)|) from CEL(Ei). Among these execu-
tions, we assume that(q − 1) executions were finished with
failures. Indeed,Ei was retriedq times and theqth ex-
ecution delegated to engineeiq (controlling the web ser-
vicewsiq) was successful. Building on [12][13], we define
T (Ei)opt by Equation(5), withT (Ei, eiq, wsiq) is the time
to executewsiq ranked in positionq in CEL(Ei).

T (Ei)opt = T (Ei, eiq, wsiq) (5)
= S(wsiq) + M(wsiq) + W (wsiq)

with: 1 ≤ q ≤ |CEL(Ei)|

DEFINITION B.2 We define theProbable Execution
Time(notedT (Ei)prob), as the estimation of the execution
time of Ei. As formulated by Equation(6), it takes into ac-
count the allocated web service failure: the time necessary
to inform about it and to recover from it (forward and back-
ward recovery are considered).

T (Ei)prob = T (Ei)opt + I(Ei) + R(Ei) (6)

DEFINITION B.3 We define theFailure Informa-
tion Time (noted I(Ei)), as the time taken by the dif-
ferent SOAP messages to be sent/received between web
services-engine and peer-engines as notifications of fail-
ure.

I(Ei) =

q−1∑

k=1

I(Ei, eik, wsik) (7)

Since any elementEi might be subject to as many failures
as the number of times it was reattempted (at mostq times),
I(Ei)), defined by Equation(7), is the sum of all the elapsed
periods of time to notify about each of the allocated web ser-
vices’ failure.

For more details about the different messages sent, de-
pending on the occurred failure type/location refer to [10].

DEFINITION B.4 We define the Failure Recov-
ery time(notedR(Ei)) as the required time to recover from
Ei failure. Since we deal with transactions, any execu-
tion must terminate in a consistent state.

R(Ei) = For(Ei) + Back(Ei) (8)

With: For(Ei) =

q−1∑

k=1

T (Ei, eik, wsik) (9)

Back(Ei) = xor(Comp(Ei), Abort(Ei)) (10)

As described in Equation(8),R(Ei) can be of two kinds:

1. For(Ei): Time necessary to perform aForward Re-
covery. It is equal to the execution retrial with the dif-
ferent web services that have failed, that is, as we de-
scribed it in Equation(9), the sum of the time necessary
to execute the(q − 1) web services that have failed;

2. Back(Ei): We define it as theBackward Recovery
Time: the time necessary to trigger a backward recov-
ery mechanism by aborting all the still-executing el-
ements and compensating all the already-committed
ones, in case a failure cannot be forwardly recoverable.
This induces thatBack(Ei) is either equal to the web
serviceCompensation TimeComp(Ei) or to the web
serviceAborting timeAbort(Ei) as in Equation(10).

2.3. ADVANCED AGGREGATION PATTERNS
OF WS-SAGAS

When we firstly proposed WS-SAGAS, only basic ag-
gregations of web services compositions were defined (par-
allel, sequential and recursive). However, considering how
business processes tend to involve more complex patterns
and to be orchestrated in more different ways, we propose to
enrich WS-SAGAS with a set of aggregation patterns com-
piled in [14].

Here, we put the accent on what follow, first, we pro-
pose to add new aggregation patterns to WS-SAGAS to
broaden our model potential scope of application since we
target to make WS-SAGAS rich enough to sustain any busi-
ness process no matter how complex it turns out. Second,
As we already specified it when we first proposed WS-
SAGAS, we are bearing in mind that our model must be
an all-encompassing model to support any information in-
tegration situations whether on web or not. These two rea-
sons were mainly behind our motivation to introduce new
aggregation patterns in WS-SAGAS.

The aggregation patterns proposed in [14] are greatly
inspired from an analysis of existing workflow languages.
These patterns capture typical control flow dependencies
encountered in workflow modeling and they arguably ap-
ply as well for web services composition, since the situa-
tions they capture are also relevant in this domain.

In what follows, we propose to build on[14] and [15]
work to define our set of WS-SAGAS advanced patterns.
For each of our defined pattern, we derive also the equation
for the execution time. However, we do not specify the re-
liability aspect since it is not altered with the aggregation
pattern that the composition follows.

2.3.1. Sequence of WS-SAGAS : An elementEj in a
compositionWSCc is enabled after the successful comple-
tion of its direct predecessor, the elementEi, havingi, j in
[0..n] and i < j (Figure.2). The estimation of theProba-
ble Execution Timeof WSCc is described in Equation (11).

T(WSCc)prob = T(Ei)prob + T(Ej)prob (11)

outin Eiin out Ejin out

wsccSi Sj

outin Eiin out Ejin out

wsccSi Sj

Figure 2. Sequence of WS-SAGAS

2.3.2. Parallel WS-SAGAS : Say we have a composition
WSCc where an elementEi, after its commitment, it has
to dispatch the execution control to its direct successors:el-
ementsEj to Ek (j ≪ k)(Figure.3), which are executed in
parallel (noted[Ej ; ...; Ek]).

Considering the case where these elements are run in
parallel andsimultaneously, theProbable Execution Time
aggregation is defined by Equation(12).

Since we consider the case of a transactional execution,
and following THROWS definitions, the order of the differ-
ent elements should be known beforehand.

We assume also that every element execution have to be
terminated necessary in a consistent state either with trig-
gering the following element(s) execution, with terminating
the overall composition execution (we are at the end of the
WS-SAGAS), or it should trigger a failure recovery in case
any failure has happened.

If they are executed in any other order the estimation
of the probable execution time ofWSCc would be, in the
worst case as described in the aggregation Equation (11).

T(WSCc)prob = T(Ei)prob (12)
+ max[T(Ej)prob; ...; T(Ek)prob]

Ei

out

Ejin

out

Ek
in

wscc

Si

Sj

Sk

.

.

.

.

.
Ei

out

Ejin

out

Ek
in

wscc

Si

Sj

Sk

.

.

.

.

.

Figure 3. Parallel WS-SAGAS

2.3.3. Selection of WS-SAGAS : This pattern is similar
to the previous one. The difference is that elementEi has
to operate a choice among the following elements and at
least oneandat most allthe following branches could be
selected. In other words, say we haveQ(Ei)succ, the set of
all thedirect successiveelements ofEi(Figure.4).Ei has to
choose amongQ(Ei)succ = {Ej , ..., Ek}).

Building on the same assumption as previously that,
equal probabilities among all choices holds,Ei can choose
amongP(Q(Ei)succ), the power set ofQ(Ei)succ, which is
the set of all subsets ofQ(Ei)succ. We defineS(Ei)succ, as
a subset chosen fromP(Q(Ei)succ), with S(Ei)succ verifies:
S(Ei)succ ⊆ P(Q(Ei)succ) andS(Ei)succ 6= ∅.

T(WSCc)prob = T(Ei)prob+T(S(Ei)succ)prob (13)

Ei

Ejin

out

Ek
in

wscc

Si

Sj

Sk

.

.

.

.

.
SelectionEi

Ejin

out

Ek
in

wscc

Si

Sj

Sk

.

.

.

.

.
Selection

Figure 4. Selection of WS-SAGAS

In the execution time described in Equation (13), by
T (S(Ei)succ)prob, we denote the probable execution time of
the different elements of this subset. If these elements areto
be executed in parallel, apply the equation of patternPar-
allel WS-SAGAS, otherwise, if it is a sequential execution
apply the equation of patternSequence of WS-SAGAS.

2.3.4. Switch of WS-SAGAS : This pattern is actually a
specialization of the patternParallel WS-SAGAS. The dif-
ference is that at least AND at most only one element can
be chosen. It is a point in the composition, where based
on an obtained result from a previous elementEi exe-
cution, a choice need to be operated among several ele-
ments[Ej |...|Ek](Figure.5). We assume here that all ele-
ments have the same probability to be chosen. The estima-
tion of T (WSCc)prob depicted as follows is:

T(WSCc)prob = T(Ei)prob+ (14)
[T(Ej)probxor...xorT(Ek)prob]

Ei

Ejin

out

Ek
in

wscc

Si

Sj

Sk

.

.

.

.

.
SwitchEi

Ejin

out

Ek
in

wscc

Si

Sj

Sk

.

.

.

.

.
Switch

Figure 5. Switch of WS-SAGAS

2.3.5. Rendezvous of WS-SAGAS : This pattern con-
siders the case where there exists a rendezvous point in
the composition where multiple parallel elements converge
into one single thread of control, thus synchronizing mul-
tiple threads(Figure.6). Say we haveEj to Ek elements
which are executed in parallel ([Ej ; ...; Ek]), their direct
common successor is an elementEl, which actually can-
not start its execution unless all the elements ([Ej ; ...; Ek])
has terminated successfully. TheT (WSCc)prob expres-
sion is:

T(WSCc)prob = max[T(Ej)prob; ...; T(Ek)prob] (15)
+T(El)prob

El
out

Ej in

Ek
in

wscc

Sl

Sj

Sk

.

.

.

.

.
RendezVous El

out

Ej in

Ek
in

wscc

Sl

Sj

Sk

.

.

.

.

.
RendezVous

Figure 6. Rendezvous of WS-SAGAS

2.3.6. Selective Merge of WS-SAGAS : It is a
point in the web services composition where two or
more elements’ executions reconverge BUT without
synchronization.(Figure.7).

Contrary to the patternExclusive Merge of WS-SAGAS,
where only one element is executed, and its execution suc-
cess would trigger the direct successor only once, this pat-
tern assumes that more than one element fromQ(El)pre =
{Ej, ..., Ek} at a time can get activated, possibly concur-
rently, and the elementEl is started for every activation of
every incoming branch.

LetS(El)pre, the subset chosen fromP(Q(El)pre) and let
λ = |S(El)pre|. At mostλ = |Q(El)pre|. The upper bound
of T (S(El)pre)prob is reached when all the elements from
S(El)pre are executed and in a sequential order.

T(WSCc)prob = T(S(El)pre)prob + λT(El)prob (16)

El
out

Ej in

Ek
in

wscc

Sl

Sj

Sk

.

.

.

.

.
Selective

Merge

λ<=|Q(E)pre|

λ

El
out

Ej in

Ek
in

wscc

Sl

Sj

Sk

.

.

.

.

.
Selective

Merge

λ |Q(E
l
)pre|

λ times

Figure 7. Selective Merge of WS-SAGAS

2.3.7. Exclusive Merge of WS-SAGAS : We consider the
case where TWO OR MORE alternative elements come to-
gether BUT without synchronization. We assume that none
of the elements is ever executed in parallel(Figure.8).

Let Q(El)pre = {Ej , ..., Ek}, the set of elements which
are the direct common successor of elementEl. Actually,
El cannot start its execution unless either of the elements of
Q(El)pre has terminated successfully. In other words,El ex-
ecution cannot be triggered unless any of its previous ele-
ments has terminated successfully its execution. We must
make sure that only one of the branches is triggered.

Assume we have a setSingleton(El)pre, which con-
tains one of the possible elements to choose among
Q(El)pre. Any of the elements ofQ(El)pre have the
same probability to trigger the execution ofEl and
thus to be inSingleton(El)pre. We assume that in case
Singleton(El)pre = ∅, a failure has for sure occurred and
that a recovery should be triggered. The probable execu-
tion of such a composition is:

T(WSCc)prob = T(Singleton(El)pre)prob + T(El)prob (17)

El
out

Ej in

Ek
in

wscc

Sl

Sj

Sk

.

.

.

.

.

Exclusive

Merge

λ =1

λ times
El

out

Ej in

Ek
in

wscc

Sl

Sj

Sk

.

.

.

.

.

Exclusive

Merge

λ =1

λ times

Figure 8. Exclusive Merge of WS-SAGAS

2.3.8. Iterative WS-SAGAS It is a point in the web ser-
vices composition execution where a particular elementEj

execution needs to be repeatedλ times (Figure.9). The num-
ber of iteration is determined upon the decision of a direct
predecessorEi which has finished executing and needs to
delegate the control.

T(WSCc)prob = T(Ei)prob + λT(Ej)prob (18)

outin Eiin out Ejin out

wsccSi Sj

λ times

Iterative outin Eiin out Ejin out

wsccSi Sj

λ times

Iterative

Figure 9. Iterative WS-SAGAS

2.4. CASE STUDY

We consider the case study of an online shopping web
site. A customer accesses the online shopping web site. Af-
ter selecting the list of items he wants to order and placing
them in his shopping basket, to place his order, he needs ei-
ther to login if he has already signed up, otherwise, he needs
to register as a new customer. Once he either logged in suc-
cessfully or registered successfully as a new customer, he
needs to choose simultaneously the mode of delivery and
payment. Once it is done, he needs to finalize his order.

Using only our WS-SAGAS former notation to describe
this case study is not possible because the exclusive choice
pattern was not yet defined. Trying to depict such a process
shows how valuable was adding the newly introduced ag-
gregation patterns in this paper. (Figure.10) follows the en-
riched WS-SAGAS notation to depict this scenario.

2.4.1. Situation 1. We consider the scenario where a cus-
tomer put three items in his basket (E1.1 7→ ws11), logged
in (E1.2 7→ ws21), did not change any of his registered in-
formation (E1.4 7→ ws41, chose rapid post as delivery mode
(E1.5 7→ ws51) and credit card as payment mode (E1.6 7→
ws61), and finally validated his order(E1.7 7→ ws71).

We suppose that all the different web services ter-
minated successfully. We suppose also thatE1.5 re-
quires longer execution time thanE1.6 and that we have:
Q(E1.4)pre = {E1.2, E1.3} since the customer logged
in, so Singleton(E1.4)pre = {E1.2}. The probable ex-
ecution time of the compositionWSC1 is described in
Equation(19):

T(WSC1)prob = T(E1.1)prob + T(Singleton(E1.4)pre)prob

+T(E1.4)prob

+ max(T(E1.5)prob, T(E1.6)prob)

+T(E1.7)prob

T(WSC1)prob = T(E1.1)prob + T(E1.2)prob

+T(E1.4)prob + T(E1.5)prob + T(E1.7)prob

(19)

With:
T(E1.1)prob = T(E1.1)opt = T(E1.1, e11, ws11)
T(E1.2)prob = T(E1.2)opt = T(E1.2, e21, ws21)
T(E1.4)prob = T(E1.4)opt = T(E1.4, e41, ws41)
T(E1.5)prob = T(E1.5)opt = T(E1.5, e51, ws51)
T(E1.6)prob = T(E1.6)opt = T(E1.6, e61, ws61)
T(E1.7)prob = T(E1.7)opt = T(E1.7, e71, ws71)

2.4.2. Situation 2. Throughout the overall composition
execution, we suppose thatE1.5 which was allocated for ex-
ecution to(e51, ws51) failed. Fortunately, its execution re-
trial is possible since we suppose that another engine/web
service couple(e52, ws52) does exist in itsCEL. Thus a
forward recovery is performed and Equation(19) becomes:

T(WSC1)prob = T(E1.1)opt + T(E1.2)opt + T(E1.4)opt

+max(T(E1.5)prob, T(E1.6)opt)

+T(E1.7)opt

(20)

With:

T(E1.5)prob = T(E1.5)opt + I(E1.5) + R(E1.5)

I(E1.5) = I(E1.5, e51, ws51)

T(E1.5)opt = T(E1.5, e52, ws52)

R(E1.5) = For(E1.5) = T(E1.5, e51, ws51)

2.4.3. Situation 3. In this case, we suppose thatE1.5 was
reattempted by(e52, ws52), failed, and thatCEL(E1.5) =
∅. Thus, a backward recovery needs to be triggered.

It entails undoing all the successfully terminated compo-
nents with compensation mechanisms and aborting all the
still executing components. Equation(20) becomes:

T(WSC1)prob = T(E1.1)opt + R(E1.1)

+T(E1.2)opt + R(E1.2)

+T(E1.4)opt + R(E1.4)

+max(T(E1.5)prob, T(E1.6)prob)

(21)

With:

R(E1.1) = Back(E1.1) = Comp(E1.1)

R(E1.2) = Back(E1.2) = Comp(E1.2)

R(E1.4) = Back(E1.4) = Comp(E1.4)

T(E1.5)prob = I(E1.5) + R(E1.5)

T(E1.6)prob = T(E1.6)opt + R(E1.6)

R(E1.5) = For(E1.5)

= T(E1.5, e51, ws51) + T(E1.5, e52, ws52)

R(E1.6) = Back(E1.6) = Abort(E1.6)

I(E1.5) = I(E1.5, e51, ws51) + I(E1.5, e52, ws52)

2.4.4. Discussion. This case study allowed us to show that
our proposal of estimating the overall compositionExecu-
tion Time, starting from the very atomic level, that is the el-
ement level(with the mapped web-service/engine couple),
and taking into consideration the failures (recovery and in-
formation time) is very promising.

In fact, major part of the proposed work addressing the
same issue, they only compute the overall execution time of
the overall process[16] or composition[17].

Moreover, they do not provide any distinction be-
tween faulty/correct executions. They only give a global
idea about the cost in time.

E1.1in

E1.2in out

E1.7
out

out
in

in

E1.3
in out

wsc1

Composition

in out

Start End

Business process

v

v
v

S1.1

v

S1.2

S1.3

S1.7

Switch Exclusive

Merge
λ times

E1.4
in

outv

E1.5in out

E1.6
in out

v

v

S1.5

S1.6

out RendezVous out

λ =1

E1.1in

E1.2in out

E1.7
out

out
in

in

E1.3
in out

wsc1

Composition

in out

Start End

Business process

v

v
v

S1.1

v

S1.2

S1.3

S1.7

Switch Exclusive

Merge
λ times

E1.4
in

outv

E1.5in out

E1.6
in out

v

v

S1.5

S1.6

out RendezVous out

λ =1 (place items in basket)

(login in)

(sign up)

(verify information)

(delivery)

(payment)

(confirm order)(place items in basket)

(login in)

(sign up)

(verify information)

(delivery)

(payment)

(confirm order)

Start End in out
S state
E element

flowinput data output dataLegend Start End in out
S state
E element

flowinput data output dataLegend

Figure 10. Enriched WS-SAGAS

However, our proposal, with estimating theExecu-
tion Time at the element level, and moreover, with con-
sidering all the possible execution cases (going from
faulty-situations to the successfully-committed execu-
tions), is much more detailed.

Indeed, with only the time execution estimation, the
more error-prone element(s) can be located, their failure
reasons might be more easily investigated (i.e., CEL empty)
ad eventually, the composition overall structure can be al-
tered, if required, to improve the performances.

We emphasize here that our defined model for reliability
and performance level estimations can apply to any other
business process whether depicted as a transaction model, a
Workflow or a flowchart or any other possible notation. In
fact, in defining the new set of advanced patterns to enrich
WS-SAGAS, one of our main concern was to keep them all-
encompassing so that they can apply as well to other cases.

3. RELATED WORK

Over the last few years, there has been a relatively large
amount of work underway in the area of aggregating web
services into compositions. A logical next step to that is to
provide the means to reckon the qualitative aspects of the
specified web services compositions.

Specifically, taking the QoS into account for web ser-
vices discovery and selection in order to give the consumers
some confidence has been a very active area of research.
The AgFlow middleware[17][18] has proposed a service
quality model to evaluate the overall quality of compos-
ite Web services and two service selection approaches for
composite service execution. Based on their QoS model, a
global service selection approach that used linear program-
ming techniques to compute optimal execution plans for
composite services has been described.

In AgFlow, the potential failure reflections on the global
execution time has not been considered. The reliability was
mapped directly to each of the web service individual reli-
ability. It was defined as the probability that a request to a

particular web service is correctly responded within a max-
imum expected time frame (which is published in the Web
service description). The value of the reliability was com-
puted from historical data about past invocations.

Moreover, in AgFlow the underlying service composi-
tion model does support only parallelism and branching.
However, in practice, business processes are more complex
and considering other kind of components orchestrations is
required.

[14] considered only relevant patterns that address the
structure of a workflow in the process modeling phase and
that no execution pattern is considered. Moreover, neither
the failure was not taken nor its recovery was considered.
Furthermore, we are assuming the case of a transactional
execution of web services compositions, thus the assump-
tion that [14] did on the fact that components are supposed
to be working independently does not hold any more.

Other work in the area were oriented toward integrat-
ing the QoS criteria in the web services description to help
once again users to acquire better results in their web ser-
vice discovery. We cite here DAML-S [6] which supports
the semantic description of web services based on a generic
ontology in which both functional and QoS aspects of ser-
vices are expressed as rule-based preconditions and post-
conditions on service operations.

The DAML-S specification has semantically described
processes. It has included constructs which specify several
QoS parameters (e.g., the quality rating, the quality guar-
antees, the degree of quality). However, the QoS model
adopted by DAML-S does not address the issue of dynamic
service composition and composite services QoS.

Besides, it has not supplied any functional solution for
its users. It has not allowed for a precise characterizationof
the different dimensions.

[19] proposed a web services discovery model in which
the functional and nonfunctional requirements are consid-
ered for service discovery. It has proposed an extension to
UDDIs data structure types. However, it did not establish
any metrics to quantify each QoS category proposed.

While major part of the work done in web services com-
positions QoS is classified under the umbrella of maximiz-
ing user/customer satisfaction, very limited work is focus-
ing on analyzing, estimating, and monitoring web services
composition QoS. Indeed this was so far done in the very
similar area of workflow.

The Crossflow project[20][21] and the METEOR
project[12][13][22][23][24] have made major contribu-
tions. Specifically, the METEOR project has investigated
four QoS dimensions, namely the time, the cost, the relia-
bility, and the fidelity. However, the Crossflow project has
not considered in any way the services dynamical compo-
sition. It has focused mainly on analyzing, predicting, and
monitoring the QoS of workflow processes.

In our work, we dealt at the same time with, first, esti-
mating the web services compositions performance and sec-
ond, on considering the dynamic composition of web ser-
vices. Furthermore, we consider a distributed transactional
execution where state capturing contribute in reliabilityes-
timation.

As for the failure repercussions consideration in the reli-
ability and time execution, and more generally QoS estima-
tions, to the best of our knowledge, no work addressing the
qualitative aspect of web services compositions has taken
into consideration this issue.

In our model definition, we were somehow inspired from
the most notable work in a very related area, which is
the popular discrete-time stable reliability models proposed
in[25] and shown below:

R(t) = 1−(system failure rate+process failure rate) (22)
The system failure is defined as the ratio between the

numbers of time a task did not perform and the number of
times the task was called for execution. The process fail-
ure rate provides information concerning the relationship
between the number of times the state done/committed is
reached and the number of times the failed/aborted state
is reached after the execution of a task. It is calculated us-
ing the formula #(failed or aborted)/(#(failed or aborted)+
#(done or commit)). This model of reliability rate compu-
tation considers the coexistence of both transactional and
none transactional tasks: in a workflow, task structure[26]
has aninitial state, anexecutionstate, and two distinct ter-
minating states. For none transactional tasks, one of the ter-
minating states indicates that a task hasfailed, while the
other state indicates that a task isdone. For transactional
tasks, the terminating states areabortedandcommitted.

This way of modeling the tasks is limitative since if other
states do exist the reliability equation will be hardly exten-
sible.

Finally, as it is described in the above equation, no mat-
ter the state is, the contribution in the reliability is always
the same (coefficient always equal to one).

In our model, we consider the fact that not all the states
contribute in the same way in the reliability computation.

In fact, thefailed state contributes negatively in the relia-
bility. However, if thecommittedstate is reached, a positive
contribution is affected.

the Web-Flow architecture [4] presented an approach
to dynamic exception handling in web-service-based
processes that supports the specification of quality con-
straints for services, in addition to conditions a service
may offer itself. A rule-based approach is used to han-
dle exceptions such as the violation of constraints or other
events (e.g. service faults) occurring during process ex-
ecution. What was proposed in Web-Flow architec-
ture can be classified under the same umbrella as what
we did in THROWS and WS-SAGAS. In fact, they con-
sidered how to increase to quality with providing faults
recovery. However, the estimation of the QoS dimen-
sions was not addressed.

Finally our model can help the composition builder to ac-
quire better estimations, and analyze them. On the base of
these estimations, failures reasons might be more smoothly
investigated, composition structure could even be altered, to
improve the performances.

4. CONCLUSIONS

In this paper, we proposed to estimate the reliability and
performance of web services compositions and to concen-
trate on one important aspect that has received little atten-
tion so far, which is the consideration of the failure reper-
cussions on the overall web service composition execution
performance.

In reaching this target, we enriched WS-SAGAS with a
new set of advanced aggregation patterns so that it fits with
the inherent business processes complexity.

Since when firstly we proposed WS-SAGAS, we only
defined a set of basic aggregation patterns: sequential, par-
allel and recursive compositions, in this paper, we en-
riched WS-SAGAS with other advanced aggregation pat-
terns, namely, Rendezvous of WS-SAGAS, Switch of WS-
SAGAS, Selection of WS-SAGAS and so forth, to support
the business process inherent complexity. For each of the
defined patterns, theExecution Timeestimation equation
was derived. Our enriched WS-SAGAS model estimated
two dimensions: theReliability and Execution time, the
most-easily influenced performance dimensions with fail-
ures. Extending our model with other dimensions is possi-
ble. In the Reliability dimension characterization, we intro-
duced theReliability Tendency, which builds mainly on the
concepts of component’sStateandStates Tendency Set.

The Reliability Tendencyupheld the idea that from one
state to another, the reliability contributions vary.

On the base of these estimations, potential executions re-
liability is ameliorated since failures detection is increased,
error-prone components are more smoothly detectable, with
failure-aware reliability estimations providing.

The reasons that lay behind the failures can be inves-
tigated and approximated. Finally, the chances to acquire
more plausible estimations of the performance are notably
ameliorated. Considering the time dimension, we intro-
duced the notion ofprobable execution timeandoptimistic
execution time, where the former considers all the possible
system states and where the latter is only limited to the cor-
rect execution. Distinguishing between these two variants
of the time dimension allowed us to provide more accurate
time estimations.

Ongoing work comprises conducting experiments us-
ing the implemented simulation system of WS-SAGAS and
THROWS architecture [11] to evaluate that our proposed
model is indeed effective. We intend mainly to add the nec-
essary module to collect the history of the past executions
of the web services compositions, to automatize the perfor-
mance estimation of each element, and of each composition
execution instances.

Acknowledgment

A part of this research was supported by a Grant-in-
Aid for Scientific Research of MEXT Japan(#16016232),
by CREST of JST, and by the TokyoTech 21COE Program
”Framework for Systematization and Application of Large-
Scale Knowledge Resources”.

References

[1] Telematica Institut Fundamental. Towards an adaptableqos
aware middleware for distributed objects a.enschede, the
netherlands, 2003 ctit phd.-thesis series number 02-46.

[2] ITU/ISO. Open distributed processing reference model,part
2: Foundations. International Standard 10746-2 ITU-T Rec-
ommendation X.902, 1995.

[3] Peer-to-Peer Process Execution with Osiris, volume 2910 of
Lecture Notes in Computer Science. Springer, 2003.

[4] U.Greiner and E.Rahm. Quality-oriented handling of ex-
ceptions in web-service-based cooperative processes. In
EAI2004.

[5] M.Keidl, S.Seltzsam, and A.Kemper. Reliable web service
execution and deployment in dynamic environments. InTES,
pages 104–118, 2003.

[6] A. Ankolekar. Daml-s: Web service description for the se-
mantic web, 2002.

[7] B. Meyer. Applying design by contract.IEEE Computer
(Special Issue on Inheritance and Classification), 25(10):40–
52, October 1992.

[8] N. Benlakhal T. Kobayashi and H. Yokota. Distributed ar-
chitecture for reliable execution of web services. Technical
report, IEICE, DBWS2003 2B, 2003.

[9] N. Benlakhal T. Kobayashi and H. Yokota. Ws-sagas: trans-
action model for reliable web-services-composition specifi-
cation and execution.DBSJ letters, 2(2):17–20, Oct. 2003.

[10] N. Benlakhal T. Kobayashi and H. Yokota. Throws: An ar-
chitecture for highly available distributed execution of web
services compositions. InRIDE WS-ECEG’2004, pages
pp.103–110, Boston, USA, March 2004. IEEE.

[11] N. Benlakhal T. Kobayashi and H. Yokota. A simulation sys-
tem of throws architecture for ws-sagas. Technical Report
7-B-4, 14th IEICE Data Eng. Workshop, March 2004.

[12] J.Cardoso and A.Sheth. Semantic e-workflow composition.
Journal of Intelligent Information Systems, 2003.

[13] G. Silver I. B. Arpinar S.Chadrasekaran, J. A. Miller and
A. Sheth. Composition, performance analysis and simula-
tion of web services.Electronic Markets: The International
Journal of Electronic Commerce and Business Media, 2003.

[14] Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl.
Qos aggregation for service composition using workflow pat-
terns. InProc. of the 8th Int. Enterprise Distributed Ob-
ject Computing Conf.(EDOC2004), pages 149–159, Mon-
terey, California, USA, September 2004. IEEE CS Press.

[15] P.Wohed, W.Aalst, M.Dumas, and A.H.M.Hofstede. Pattern
based analysis of bpel4ws. Technical Report FIT-TR-2002-
04, Queensland University of Technology, Brisbane, 2002.

[16] J.Miller J.Arnold J.Cardoso, A.Sheth and K.Kochut. Quality
of service for workflows and web service processes.Journal
of Web Semantics, 2004.

[17] M.Dumas J.Kalagnanam L.Zeng, B.Benatallah and
Q.Z.Sheng. Quality driven web services composition.
In the twelfth inter. conf. on World Wide Web, pages 411 –
421, Budapest, Hungary, 2003. ACM Press.

[18] L.Zeng, B.Benatallah, A.Ngu, M.Dumas, J.Kalagnanam,and
H.Chang. Qos-aware middleware for web services composi-
tion. IEEE Transactions on Software Engineering, 30(5):311
– 327, May 2004.

[19] Shuping Ran. A model for web services discovery with qos.
ACM SIGecom Exchanges, 4(1):1–10, Spring 2003.

[20] Paul W. P. J. Grefen, Karl Aberer, Heiko Ludwig, and Yigal
Hoffner. Crossflow: Cross-organizational workflow manage-
ment for service outsourcing in dynamic virtual enterprises.
IEEE Data Eng.Bulletin, 24(1):52–57, 2001.

[21] J.Wasch J.Klingemann and K.Aberer. Deriving service mod-
els in crossorganizational workflows. InRIDE-Information
Tech.for Virtual Enterprises, Australia, March 1999.

[22] J. Cardoso.Quality of Service and Semantic Composition of
Workflows. Ph.d. dissertation, Department of Computer Sci-
ence, University of Georgia, Athens, GA., 2002.

[23] A.Sheth J.Cardoso, J.Miller and J.Arnold. Modeling quality
of service for workflows and web service processes.techni-
cal report, 2002.

[24] J. Cardoso J. Miller Sheth, A. and K. kochut. Service-
oriented middleware. In6th World Multiconference on Sys-
temics, Cybernetics and Informatics, Orlando, FL, 2002.

[25] E.C.Nelson. A statistical basis for software reliability assess-
ment. Technical report, TRW Systems Report, March 1973.

[26] N.Krishnakumar and A.Sheth. Managing heterogeneous
multi-system tasks to support enterprise-wide operations.
Distributed and Parallel Databases, 3(2), 1995.

