
論文 / 著書情報
Article / Book Information

Title LAX: An Efficient Approximate XML Join Based on Clustered Leaf
Nodes for XML Data Integration

Author Wenxin Liang, Haruo Yokota

Journal/Book name 22nd British National Confernece on Databases (BNCOD22), Lecture
Notes in Computer Science, Vol. LNCS, No. 3567, pp. 82-97

発行日 / Issue date 2005, 7

DOI 10.1007/11511854_7

権利情報 / Copyright The original publication is available at www.springerlink.com.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

LAX : An Efficient Approximate XML Join
Based on Clustered Leaf Nodes for XML Data

Integration

Wenxin Liang1 and Haruo Yokota2

1,2 Department of Computer Science
2 Global Scientific Information and Computer Center

Tokyo Institute of Technology
2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8552, Japan

1 wxliang@de.cs.titech.ac.jp,2 yokota@cs.titech.ac.jp

Abstract. Recently, more and more data are published and exchanged
by XML on the Internet. However, different XML data sources might
contain the same data but have different structures. Therefore, it re-
quires an efficient method to integrate such XML data sources so that
more complete and useful information can be conveniently accessed and
acquired by users.
The tree edit distance is regarded as an effective metric for evaluating
the structural similarity in XML documents. However, its computational
cost is extremely expensive and the traditional wisdom in join algorithms
cannot be applied easily. In this paper, we propose LAX (Leaf-clustering
based Approximate XML join algorithm), in which the two XML docu-
ment trees are clustered into subtrees representing independent items and
the similarity between them is determined by calculating the similarity
degree based on the leaf nodes of each pair of subtrees. We also propose
an effective algorithm for clustering the XML document for LAX. We
show that it is easily to apply the traditional wisdom in join algorithms
to LAX and the join result contains complete information of the two
documents. We then do experiments to compare LAX with the tree edit
distance and evaluate its performance using both synthetic and real data
sets. Our experimental results show that LAX is more effcient in per-
formance and more effective for measuring the approximate similarity
between XML documents than the tree edit distance.

1 Introduction

The eXtensible Markup Language (XML) is increasingly recognized as the de
facto standard for representing and exchanging data on the Internet, because it
can represent different kinds of data from multiple sources. Recently, more and
more data, especially bioinformatics and bibliography data such as MAGE [12]
, DBLP [19] and ACM SIGMOD Record [1], are published by XML on the
Internet. However, the same data might have different structures and contents
in different XML data sources. Thus, it is paramount to integrate such data

sources so that users can conveniently access and acquire more complete and
useful information. However, the integration of XML data from multiple sources
is not an easy task, because XML documents from different sources might have
different structures even though they represent the same information.

The Document Type Descriptor (DTD) is regarded as a useful tool to obtain
the structural information from XML documents [2, 7]. However, even if XML
data sources have the same DTDs, they may not have identical tree structures
due to the repeating and optional elements and attributes [8, 9, 14]. Therefore,
an effective approximate XML join algorithm, which is able to measure the
similarity between XML documents without considering DTDs, becomes of great
importance to solve the problem of integrating multiple XML data sources.

Example 1. Fig. 1 shows an example of two XML documents with different
DTDs1. Although these two documents are structurally different, they repre-
sent the similar data. Moreover, in terms of the related data items of the two
documents (i.e. “article” here in this example), one document may have some in-
formation what the other does not have. For instance, pages in (a); and volume
in (b).

The tree edit distance is currently verified as an effective metric for measuring
the structural similarity in XML documents [8,14]. However, the computational
cost of the tree edit distance is extremely high. Besides, the traditional wisdom
in join algorithms (sort merge, hash joins etc) is of difficulty to be applied to
this area [8].

The main contributions of this paper are as follows:

– Computing tree edit distance between two XML documents is a very expen-
sive operation. To solve this problem, we propose an efficient join algorithm
LAX (Leaf-clustering based Approximate XML join algorithm), in which
the two XML document trees are clustered into subtrees representing inde-
pendent items and the similarity between them is determined by calculating
the similarity degree based on the leaf nodes of each pair of subtrees. We
also present an algorithm for effectively clustering the XML document into
independent items for LAX.

– The traditional wisdom in join algorithms can be easily applied to LAX,
because the join operation of LAX is the same as traditional joins in RDBs.
Besides, the integration of the hit subtrees can make the join results contain
complete information from the two XML documents been joined.

– We do experiments to evaluate LAX using both synthetic and real data sets,
investigating how the number of leaf nodes and the number of clustered sub-
trees affect the performance of LAX. We also do experiments to compare
LAX with the tree edit distance. The experimental results show that our

1 Associating to our interested real bibliography XML data, we make the DTD in
Fig. 1(a) similar to that of DBLP, and the DTD in Fig. 1(b) similar to that of ACM
SIGMOD Record.

Bibliography

article article

title author title author pages

XML John XML
Joins

13-24Alice

pages

1-12

book

title

XML DB

author author

John Bob

... ...

PaperRecord

article article

authors title authorstitle

 XML XML
 Joins

author author author

John Jane John

author

Alice

volume volume

1110

articles

... ...

(a) (b)

Fig. 1. Example XML document trees

algorithm is more efficient in performance and more effecitive for measur-
ing the approximate similarity between XML documents than the tree edit
distance.

The rest of this paper is arranged as follows: Section 2 briefly introduces
the work related to the issues addressed in this paper. In Section 3, we briefly
introduce the tree edit distance, and we provide basic definitions necessary for the
proposed algorithm and state the problem considered in this paper. In Section 4,
we propose and discuss LAX. In Section 5, we compare LAX with the tree edit
distance evaluate its performance by experiments. In the end, Section 6 concludes
the paper and outlines the future work.

2 Related Work

An XML document can be modeled as an ordered labeled tree [18]. Each element
in the XML document corresponds to a node in the ordered labeled tree labeled
with the element tag name. A lot of work has been done to solve the problem of
measuring the edit distance between such trees [3, 4, 13,16,17,21,22]. A general
definition of the distance between ordered labeled trees is presented by using the
tree edit distance that is defined as the minimum cost edit operations (insertions,
deletions and substitutions) required to transform one tree to another [22]. The
tree edit distance is considered to be an effective metric for calculating the
structural similarity in XML documents [8, 14]. However, the tree edit distance
is a very expensive operation and the traditional wisdom in join algorithms (sort
merge, hash joins etc) is not easy to be extended to this application field [8].

To avoid the expensive tree edit distance operation as much as possible, S.
Guha, et al. [8] developed lower and upper bounds as inexpensive filters for the
tree edit distance operation. However, when the upper bound is greater than the
threshold distance τ and, at the same time, the lower bound is less than τ , the
expensive tree edit distance still must be calculated.

Besides, XML and its schema languages do not provide any semantic infor-
mation. A number of work related to XML schema matching and integration

has been studied by many researchers [5,6,11,15,20]. Generally, schema match-
ing is an important and difficult problem for many database applications such
as schema integration, data warehousing, and E-business [15]. From the XML
data integration point of view, the problem of semantic heterogeneities is still a
pervasive and paramount issue. However, many real XML documents contain re-
peating elements, articlesTuple in SigmodRecord.xml [1] for example. Taking
such XML documents as the target, the approximate similarity degree between
them can be effectively determined by computing the similarity degree of clus-
tered subtrees (rooted at the repeating elements) even without considering the
semantic heterogeneity. In Section 4, we will mention this problem associated
with our algorithm.

3 Preliminaries

3.1 Tree Edit Distance

A well formed XML document can be parsed into an ordered labeled tree, in
which the tree structure represents nesting of the elements and node labels
records the contents of the elements by element tags, attribute names, attribute
values and PCDATA values.

Definition 1 (XML Document Tree). An XML document tree T is an or-
dered labeled tree parsed from an XML document.

Let T1 and T2 be two XML document trees, the tree edit distance between
them is defined as follows:

Definition 2 (Tree Edit Distance). Given two XML document trees T1 and
T2, the tree edit distance, TEDist(T1,T2), is defined as the minimum cost edit
operations (insertions, deletions and substitutions) that transforms one tree to
the other.

Assume each node label is a symbol chosen from an alphabet Σ of size |Σ|.
Let λ 6∈ Σ denote the null symbol. An edit operation can be represented as
γ(a → b). γ(a → b) is an insert operation if a = λ, a delete operation if b = λ,
and a substitute operation if a 6= λ and b 6= λ.

The tree edit distance TEDist(T1, T2) can be figured out by a mapping M
between the nodes of the two trees. Formal description of the mapping and
algorithms for computing the tree edit distance are available in [22].

Given an XML document tree T , let d(T) denote its depth. For two document
trees Tb and Tt, and let tb and tt be any pair of subtree. Then the time complexity
of the computation of the tree edit distance can be bounded by the following
equation [22]:

O(

|T1|∑
i=1

|T2|∑
j=1

|t1i| × |t2j |) = O(

|T1|∑
i=1

|t1i| ×
|T2|∑
j=1

|t2j |) = O(|T1| × |T2| × d(T1)× d(T2)) (1)

For document trees of size O(n), in the worst case, it is an O(n4) operation.

Tb Tt

A B

C C

D E

D E A C

A B

tb1 tb2 tt1 tt2

Fig. 2. Example clustering of XML doc-
ument trees

PaperRecord

article article

authors title authorstitle

 XML XML
 Joins

author author author

John Jane John

author

Alice

volume volume

1110

articles

... ...

Fig. 3. Example of a well-clustered doc-
ument

3.2 Basic Definitions for LAX

Notation. Let Tb and Tt be two XML document trees, where b denotes base,
and t denotes target. Assume Tb and Tt are clustered into kb and kt sub-trees
tbi(1 ≤ i ≤ kb) and ttj(1 ≤ j ≤ kt), as shown in Fig. 2, respectively.

Definition 3 (Subtree Similarity Degree). For each pair of subtrees tbi and
ttj, let tbi be the base subtree, and ttj be the target one. Let nbi and ntj represent
the number of leaf nodes of tbi and ttj. If there are n pairs of leaf nodes of the two
subtrees having the same PCDATA values, then the similarity degree of subtrees
tbi and ttj, S(tbi, ttj) is defined as follows:

S(tbi, ttj) =
n

nbi
× 100 (%) (2)

Definition 4 (Matched Subtree). In each join loop i, for the base subtree tbi

and each target subtree ttj (1 ≤ j ≤ kt), the subtree similarity degree S(tbi, ttj) is
computed one by one. The matched subtree TMi is defined as the pair of subtrees
tbi and ttj that has the maximum subtree similarity degree in that join loop.

Definition 5 (Tree Similarity Degree). Let the base document tree Tb that
has the less number of subtrees be the outer loop and the target one Tt be the
inner loop. In each join loop i, let the similarity degree of each matched subtree
be recorded into an array SM [i]. The tree similarity degree S(Tb, Tt) is defined
as follows:

S(Tb, Tt) =
∑kb

i=1 SM [i]
kb

× 100 (%) (3)

3.3 Problem Statement

Let Sb and St be two XML data sources. We are pursuing an algorithm to execute
join operations, based on the leaf nodes of each pair of clustered subtrees of the
XML documents, using similarity degree as a join predicate. The main problem
addressed in this paper is formally defined as follows:

Problem 1 (Leaf-clustering based Approximate XML Joins). Given two XML
data sources, Sb and St, a user defined threshold τ , and the tree similarity degree
S(Tb, Tt) accessing the distance between pairs of XML documents trees Tb and
Tt parsed from two documents db ∈ Sb and dt ∈ St. The leaf-clustering based
approximate join operation outputs all pairs of documents (db, dt) ∈ Sb × St,
such that S(Tb, Tt) ≥ τ .

In the tree edit distance, for any two XML documents with different DTDs
that have the same number of nodes, the tree edit distances of them do not
change a lot when the PCDATA values of the leaf nodes change. However, in
LAX, the change of the values of the leaf nodes might change the values of the
tree similarity degrees in a large scale. Therefore, pairs of XML documents that
have the same tree edit distance might have different tree similarity degrees.
Besides, because in LAX the XML document is clustered into subtrees repre-
senting independent items, the matched subtrees that have large enough subtree
similarity degrees still can be integrated even though the tree edit distance of
the two whole documents exceeds the threshold.

4 LAX

4.1 Clustering

An XML document can be generally divided into many independent items by
clustering it into subtrees at some specific element nodes. However, it is not
easy to cluster an XML document tree into subtrees representing independent
items. As a matter of fact, a well-clustered document requires that each clustered
subtree meets the following conditions.

1. Each subtree represents only one independent item; that is, a subtree does
not include any information of other items.

2. One independent item is clustered into one subtree; that is, one item does
not have more than one corresponding subtrees.

3. Each subtree includes the information of an item as much as possible. In
other words, the leaf nodes belonging to that item should be included in the
subtree as much as possible.

Example 2. Fig. 3 shows an example of a well-clustered document. The docu-
ment tree is clustered into two subtrees at the element nodes article so that
each subtree represents complete information of an independent article.

In order to include more information of an independent item, an element is
not supposed to be selected as the spot for clustering, if 1) it has only one child,
and 2) the distance to its furthest child is less than 3. Before we treat of the
algorithm for clustering XML document trees, we give the following definitions.

Definition 6 (Candidate Element). An element is a candidate element, if it
has at least 2 children, or the distance to its furthest child is at least 3.

Algorithm ClusterXMLDoc(T) {
Input: XML document tree T
Output: Clustering spots for T
Let N be the number of top-down paths, and M [i] be the
number of candidate elements in the i-th path.

for (i = 1 to N) {
ClusteringSpot[i] = null;
wmax[i]=0;
for (j = 1 to M [i]) {

w=n[j]× d[j]φ;
if (wmax[i] < w) {

wmax[i] = w;
ClusteringSpot[i] = E(n[j], d[j]);

}
}
return CluteringSpot[i];

}
}

Fig. 4. Algorithm ClusterXMLDoc

Definition 7 (Link Branch). A branch between two candidate elements is a
link branch.

Definition 8 (Top-down Path). A top-down path is defined as a path from
the top candidate element to the bottom one via link branches.

Only one candidate element should be selected as the place for clustering
in one top-down path. Generally, we consider a candidate element as a proper
spot for clustering, if it has more link branches (i.e. there are more candidate
elements among its children), and it is at higher level of the document tree (i.e.
it is far from its furthest child). To effectively find the most appropriate spot for
clustering, we define the weighting factor for evaluating each candidate element
in a top-down path as follows.

Definition 9 (Weighting Factor). For a candidate element E(n, d), let n
denote the number of link branches below it, and d denote the distance to its
furthest child. The weighting factor w is defined as follows:

w = n× dφ (0 < φ ≤ 1) (4)

where φ is an adjustable constant2.

Then we define the clustering spot that indicates the place for clustering
using the weighting factor w as follows.
2 For the sake of simplicity, we set φ = 1 for the examples in this paper. In fact, doc-

uments from different sources may require different φ to achieve better clusterings.
In the real application, φ can be dynamically optimized by experiments.

PaperRecord(1,5)

article(1,3) article(1,3)

authors(0,2) title authors(0,2)title

 XML XML
 Joins

author author author

John Jane John

author

Alice

volume volume

1110

Link branch
articles(2,4)

Fig. 5. Example of clustering using Algo-
rithm ClusterXMLDoc

tb1 tt1 tb1 tt2

A

B

C

A

B

C

D

A

E

A

C

B

(a) The first join loop
tb2 tt1 tb2 tt2

C

D

E

C

D

E

D

A

E

A

C

B

(b) The second join loop

Fig. 6. Example of calculating subtree
similarity degrees

Definition 10 (Clustering Spot). In each top-down path of an XML docu-
ment tree T , the clustering spot, indicating the place for clustering, is the can-
didate element E(n, d) that has the maximum w in that top-down path. If two
or more candidate elements have the same value of w in the same path, the one
who has the maximum d is chosen as the clustering spot.

In a top-down path, the subtree can be simply generated by deleting the
link branch below the clustering spot; that is, the root of the subtree is the
child element of the clustering spot in that top-down path. The algorithm for
determining the clustering spots for an XML document tree is shown in Fig. 4 .

Example 3. Fig. 5 shows a simple example of clustering an XML document tree
by Algorithm ClusterXMLDoc. There are two top-down paths in the document
tree. In the left path, {PaperRecord(1,5), articles(2,4), article(1,3),
authors(0,2)}, the clustering spot is the candidate element articles(2,4)
because of the maximum w = 2 × 4 = 8. Similarly, the clustering spot in the
right path is the same element, articles(2,4). Therefore, the document tree
can be clustered into the two circled subtrees shown in Fig. 5.

4.2 Join Algorithm

Let Sb and St be two XML data sources, and each db ∈ Sb and dt ∈ St be parsed
into XML document trees Tb and Tt. Assume Tb and Tt are clustered into kb and
kt subtrees tbi and ttj by using Algorithm ClusterXMLDoc. Given a user-defined
threshold τ , the Leaf-clustering based Approximate XML join algorithm (LAX)
is illustrated by Fig. 7.

Example 4. Fig. 6 shows the join process by LAX for the two XML documents
trees Tb and Tt in Fig. 2. Let Tb be the outer loop and Tt be the inner loop
for the join operation. In the first join loop shown in Fig. 6 (a), the similarity

Algorithm LAX {
Input: XML data source Sb and St

Output: Pairs of XML documents (db, dt)
for each db ∈ Sb {

Parse db into Tb;
ClusterXMLDoc(Tb);
for each dt ∈ St {

Parse dt into Tt;
ClusterXMLDoc(Tt);
Sum = 0;
for (i = 1 to kb) {

SM [i] = 0;
for (j = 1 to kt) {

Calculate S(tbi, ttj);
SM [i] = Max(SM [i], S(tbi, ttj));

}
Sum = Sum + SM [i];

}
if(Sum/kb ≥ τ) {

return (db, dt);
}

}
}

}

Fig. 7. Algorithm LAX

degrees of each pair of subtrees can be calculated as follows:

s(tb1, tt1) =
1
3
× 100% = 33.3%

s(tb1, tt2) =
3
3
× 100% = 100%

Then the similarity of the matched subtree,
SM [1] = Max{S(tb1, tt1), S(tb1, tt2)} = 100%. In the same way, we have SM [2] =
66.7% for the second join loop. Finally, the tree similarity degree S(Tb, Tt) can
be calculated by equation (3), i.e., S(Tb, Tt) = SM [1]+SM [2]

2 × 100% = 1+0.667
2 ×

100% = 83.4%. If S(Tb, Tt) ≥ τ , the two documents should be output as the
final result.

4.3 Discussion

Cost. Let two XML document trees Tb and Tt be clustered into kb and kt sub-
trees, respectively. For i = 1 to kb, assume each subtree tbi has αi leaf nodes, and
for j = 1 to kt, each subtree ttj has βj leaf nodes. Then the total computational

PaperRecord

article article

authors title authorstitle

 XML XML

 Joins

author author author

John John

author

Alice

volume volume

1110

pages

1-12 12-23

pages

Jane

articles

... ...

Fig. 8. Example of an output of LAX

cost of LAX can be figured out by the following equation:

C =
kb∑

i=1

kt∑

j=1

αi × βj (5)

If the sizes of the two XML document trees are both O(n), in the worst case,
LAX is an O(n2) operation.

Traditional Wisdom in Join Algorithms. The traditional wisdom in join
algorithm can be easily applied to LAX, because the join operations based on the
clustered leaf nodes in LAX are just the same as the traditional joins in an RDB.
Therefore, LAX may achieve more efficiency by using traditional techniques for
join algorithms. For example, the total cost of LAX using hash joins can be
calculated as follows:

CHASH =
kb∑

i=1

kt∑

j=1

(Cgen(αi) + Chash(αi + βj) + Ccomp(βj)) (6)

where, Cgen represents the cost of making entries for subtree tbi; Chash stands
for the cost of using the hash function to the two subtrees; and Ccomp means the
cost of comparisons in the probe phase.

Output of LAX.

Definition 11 (Hit Subtree). In the ith join loop, let the similarity degree of
the matched subtree TMi be SM [i]. Given a threshold T (0 < T ≤1), the matched
subtree is a hit subtree, if SM [i] ≥ T .

Given two XML document trees T1 and T2, if the tree similarity degree of T1

and T2, S(T1, T2) ≥ τ , the two XML document trees can be integrated at each
hit subtrees. Fig. 8 shows an example of the output XML document from joining
the two XML documents in Fig. 1 using LAX, in which the whole information
of the articles from the two documents been joined is included. Thus, users can
conveniently acquire more complete and useful information of the articles by
accessing the output document.

Table 1. Experimental Environment

CPU Intel Pentium IV 2.80GHz

Memory 1.0 GB

OS MS Windows XP Professional

Programming
Environment Sun JDK 1.4.2

Issues to be Considered. In our algorithm, we just compare the PCDATA
values of the leaf nodes without considering their semantic similarities. The more
precise join can be achieved by using techniques of semantic matching. Another
issue is that in case the similarity degrees of one subtree in the outer loop and
several subtrees in the inner loop happen to be the same, how to choose the
right pair? In this case, one effective solution is to compare the common parents
of the leaf nodes to decide which subtree is the right one. However, there still
exists semantic problem when comparing the common parents.

5 Experimental Evaluation

In this section, we conduct experiments to observe the efficiency and effective-
ness of our algorithm comparing with the tree edit distance. We also perform
experiments to investigate how the number of leaf nodes and the number of
clustered subtrees affect the performance of our algorithm.

5.1 Data Set Used

We used both real and synthetic data sets to perform our experiments. For a syn-
thetic data set, we used IBM XML generator available through AlphaWorks [10].
The XML generator can randomly generate XML documents by inputting DTDs.
In our experiments, we utilized SigmodRecord.dtd [1] to randomly generate XML
documents of different sizes by changing the two parameters: MaxLevels and
MaxRepeats. The size range of the generated XML documents was from 1 to 150
KB (about 0 to 5000 nodes).

For the real data set, we made use of the XML documents of OrdinaryIssuePage,
ProceedingsPage and SigmodRecord from the XML version of ACM SIGMOD
record [1], and the XML document of the DBLP database [19].

5.2 Experimental Environment

Our experiments were done under the environment shown in Table 1.

5.3 Comparing LAX with Tree Edit Distance

Efficiency. To evaluate the efficiency of our algorithm, we compared the time
to computer the tree similarity degree for a pair of XML documents by our

0

5000

10000

15000

20000

25000

30000

35000

0 200 400 600 800 1000 1200

Document size (number of node)

T
im

e
 (

S
e
c
.)

LAX Tree Edit Distance

Fig. 9. Time for computing tree edit dis-
tance and tree similarity degree

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

Number of hit subtrees

T
re

e
 s

im
il

a
ri

ty
 d

e
g

re
e

Fig. 10. Tree similarity degree increases
proportionally to the number of hit sub-
trees

Table 2. The number of nodes and clustered subtrees included in each fragment

sigmod.xml dblp1.xml dblp2.xml dblp3.xml dblp4.xml dblp5.xml dblp6.xml

No. of nodes 194 196 196 193 202 198 202

No. of subtrees 17 9 9 9 9 9 9

algorithm with that of tree edit distance using synthetic data sets. Because the
tree edit distance is extremely time-consuming, in this paper we only used the
pair of documents whose total number of nodes is less than 1200.

From Fig. 9, we observe that our algorithm is overwhelmingly faster com-
paring to the tree edit distance when the number of nodes is more than 500,
corresponding with our analytical expectations. Therefore, we can consider that
our algorithm is more efficient than the tree edit distance for measuring the
similarity between XML documents.

Effectiveness. In our algorithm, the similarity degree is defined as the quanti-
tative measurement for calculating the subtree similarity degree. The larger the
similarity degree is, the higher the probability of the subtrees being the same is,
even though the element nodes above the leaf nodes have different structures or
values.

To verify the effectiveness of our algorithm for determining the similarity
between XML documents, we calculated the tree similarity degrees using LAX
and compared them with the tree edit distances of the same pairs of XML docu-

Table 3. Result of each pair of fragments

Tree edit distance Tree similarity degree No. of hit subtrees

sigmod.xml × dblp1.xml 216 0.149 4

sigmod.xml × dblp2.xml 216 0.120 3

sigmod.xml × dblp3.xml 210 0.067 2

sigmod.xml × dblp4.xml 219 0.011 0

sigmod.xml × dblp5.xml 216 0.220 8

sigmod.xml × dblp6.xml 220 0.169 6

Table 4. Result of the matched subtrees of sigmod.xml × dblp6.xml

TM [1] TM [2]∗ TM [3]∗ TM [4] TM [5]∗ TM [6]∗ TM [7]∗ TM [8] TM [9]∗

Nsigmod 25 21 21 23 23 21 23 23 21

Ndblp 12 10 10 12 12 10 12 14 10

SM 0.083 0.2 0.2 0.091 0.273 0.2 0.273 0.0 0.2

TEDist 24 20 20 22 22 20 22 23 20

ments. In our experiments, we utilized the real XML documents, DBLP.xml [19]
and SigmodRecord.xml [1]. Because the calculation of the tree edit distance is
extremely time-consuming, we divided the SigmodRecord.xml into small frag-
ments. Each fragment contains the entire articles of one issue. In the same way,
we divided the DBLP.xml into fragments contains almost the same number of
nodes as those of SigmodRecord.xml. Here we show the result of an example
using one fragment of SigmodRecord.xml3 and six fragments of DBLP.xml4. Ta-
ble 2 shows the number of nodes and clustered subtrees (each subtree contains
complete information of an article) included in each fragment. Table 3 shows the
results of the tree edit distance and tree similarity degree of each pair of frag-
ments. From the results, we can observe that the tree edit distance of each pair
of fragments is almost the same. However, the tree similarity degree increases
proportionally to the number of hit subtrees as shown in Fig. 10. That is to
say, our algorithm can effectively distinguish the similarity differences between
pairs of XML documents even they have the same tree edit distance. Table 4
shows the detailed results of each matched subtree of sigmod.xml × dblp6.xml,
where TM [i] denotes the matched subtree, ∗ indicates the hit subtree, Nsigmod

and Ndblp represent the number of nodes in each subtree of the matched subtree
of sigmod.xml and dblp6.xml, respectively, and SM and TEDist denote the sim-
ilarity degree and the edit distance of each matched subtree, respectively. From
the results, we can see that it is difficult for the tree edit distance to determine
the hit subtree. However, our algorithm can effectively determine the hit subtree
by setting an appropriate threshold T . Therefore, by integrating the hit subtrees,
the XML document that contains more complete information can be output.

5.4 Evaluating LAX

In our experiments, we took two XML documents from synthetic or real data
sets as the input for our algorithm. And then we investigated how the number of
leaf nodes and the number of clustered subtrees impacted the performance of our
algorithm. The time for computing the tree edit distance using synthetic data
sets are shown in Fig. 11. The X-axis in Fig. 11 (a) represents the total number
of leaf nodes of the two documents to be joined, and the X-axis in (b) denotes

3 Vol.20, No.3, SIGMOD Record 1991
4 To obtain different number of hit subtrees, in this paper we specially chose the

fragments that contain different number of articles from Vol.20, No.3, SIGMOD
Record 1991

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 1000 2000 3000 4000 5000

Number of leaf nodes

T
im

e
 (

S
e
c
.)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 100 200 300 400 500

Number of clustered subtrees

T
im

e
 (

S
e
c
.)

(a) (b)

Fig. 11. Time for computing the tree similarity degree using synthetic data sets

0

100

200

300

400

500

0 2000 4000 6000 8000 10000

Document size (number of total nodes)

N
u
m

b
e
r

o
f

c
lu

s
te

re
d
 s

u
b
tr

e
e
s

Fig. 12. Number of clustered subtrees of
synthetic XML documents

0

20

40

60

80

100

120

0 1000 2000 3000 4000

Document size (number of toal nodes)

N
u

m
b

e
r

o
f

c
lu

s
te

re
d

 s
u

b
tr

e
e

Fig. 13. Number of clustered subtrees of
real XML documents

the total number of clustered subtrees in the two documents. From Fig. 11, we
observe that the runtime of our algorithm increases almost proportionally to the
number of leaf nodes or the number of clustered subtrees, and the impacts on
the time to computer the tree similarity degree by the two factors are almost
the same. Fig. 11 also shows that for the total number of leaf nodes of the two
documents less than 5000 (document size less than 300KB) or the total number
of clustered subtrees less than 400, the computation of the tree similarity degree
can be accomplished within 2 seconds.

We also investigated how the number of clustered subtrees changed when the
document size increased. Fig. 12 indicates that the number of clustered subtrees
generally increases, when the size of document becomes larger. However, the
number of clustered subtrees does not always increase monotonously, because
the clustered subtrees might contain different number of nodes due to different
DTDs.

The results using real XML data sets are shown in Fig. 13 and 14. The
runtime using real data sets increases faster than the one using synthetic data
does under the same scale number of leaf nodes. Because the length of the
PCDATA of real data is generally longer than that of synthetic data made by
the XML generator.

1.5

1.55

1.6

1.65

1.7

1.75

1.8

0 500 1000 1500

Number of leaf nodes

T
im

e
 (

S
e
c
.)

1.5

1.55

1.6

1.65

1.7

1.75

1.8

0 20 40 60 80 100 120

Number of clustered subtrees

T
im

e
 (

S
e
c
.)

(a) (b)

Fig. 14. Time for computing the tree similarity degree using real data sets

6 Conclusions and Future Work

It becomes more important to measure the approximate similarity between XML
documents for integrating multiple XML data sources. Tree edit distance is cur-
rently recognized as a general metric for computing the structural similarity
between XML documents. However, its computational cost is too expensive.
Recognizing this problem, in this paper we have proposed LAX (Leaf-clustering
based Approximate XML join algorithm), in which the two XML document
trees are clustered into many subtrees representing independent items and the
approximate similarity between them are determined by calculating the similar-
ity degree based on the leaf nodes of each pair of subtrees. We have also proposed
an effective algorithm for clustering the XML document for LAX.

The proposed algorithm has the following advantages: 1) it is an inexpensive
and effective algorithm to determine the approximate similarity between XML
documents; 2) the traditional wisdom in join algorithms can be applied to it
without any difficulties; and 3) its output document contains complete informa-
tion of the two documents been joined.

We have done experiments to compare our algorithm with the tree edit dis-
tance and evaluate its performance using both synthetic and real data sets. Our
experimental results show that LAX, comparing with the tree edit distance, is
more efficient in performance and more effective for measuring the approximate
similarity between XML documents.

In our experiments, we just used XML data of small size generated by the
DOM Parser. In the future, we plan to do further experiments with the real
bioinformatics and large-scale knowledge-based XML data stored in RDBs.

Acknowledgements. We thank the anonymous reviewers for their valuable
comments. We are also grateful to Mr. Xiangyong Ouyang for his assistance
on programming. This work is supported in part by the Grant-in-Aid for Sci-
entific Research of MEXT Japan (grant number 16016232), by CREST of JST
(Japan Science and Technology Agency), and by the TokyoTech 21COE Program

“Framework for Systematization and Application of Large-Scale Knowledge Re-
sources”.

References

1. ACM SIGMOD Record in XML. Available at http://www.acm.org/sigmod/
record/xml/

2. M. Arenas and L. Libkin. A Normal Form for XML Documents. ACM Transactions
on Database Systems, 29(1):195-232, March 2004.

3. S. Chawathe and H. Garacia-Molina. Meaningful Change Detection in Structured
Data. In Proc. of ACM SIGMOD 1997, pages 26-37, 1997.

4. S. Chawathe, A. Tajaraman, H. Garacia-Molina and J. Widom. Change Detection
in Hierarchically Structured Information. In Proc. of ACM SIGMOD 1996, pages
493-504, 1996.

5. I. F. Cruz, H. Xiao and F. Hsu. An Ontology-Based Framework for XML Semantic
Integration. In Proc. of IDEAS 2004, pages 217-226, 2004.

6. A. Doan, P. Domingos and A. Halevy. Reconciling Schemas of Disparate Data
Sources: A Machine-learning Approch. In Proc. of ACM SIGMOD 2001, pages
509–520, 2001.

7. W. Fan and L. Libkin. On XML Integrity Constraints in the Presence of DTDs.
In Proc. of PODS’01, pages 114-125, 2001.

8. S. Guha, H.V. Jagadish, N. Koudas, D. Srivastava and T. Yu. Approximate XML
Joins. In Proc. of ACM SIGMOD 2002, pages 287-298, 2002.

9. S. Guha, N. Koudas, D. Srivastava and T. Yu. Index-Based Approximate XML
Joins. In Proc. of ICDE 2003, pages 708-710, 2003.

10. IBM XML Generator. Available at http://www.alphaworks.ibm.com/xml/
11. M. Lee, L. Yang, W. Hus and X. Yang. XClust: Clustering XML Schemas for

Effective Integration. In Proc. of CIKM’02, pages 292-299, 2002.
12. MAGE (MicroArray and Gene Expression). Available at http://www.mged.org/

Workgroups/MAGE/mage.html
13. A. Marian, S. Abiteboul, G. Cobena and L. Mignet. Change-Centric Management

of Versions in an XML Warehouse. In Proc. of 27th VLDB, pages 581-590, 2001.
14. A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML Docu-

ments. In Proc. of WebDB 2002, pages 61-66, 2002.
15. E. Rahm and P. A. Bernstein. A Survey of approaches to automatic schema match-

ing. the VLDB Journal, 10(1):334-350, 2001.
16. S. Selkow. The Tree-to-tree Editing Problem. Information Processing Letters,

6(6):184-186, December 1977.
17. Y. Wang, D. J. DeWitt and J. Cai. X-Diff: An Effective Change Detection Algo-

rithm for XML Documents. In Proc. of ICDE 2003, pages 519-530, March 2003.
18. World Wide Web Consortium (W3C). The Document Object Model (DOM).

http://www.w3.org/DOM/.
19. XML Version of DBLP. Available at http://dblp.uni-trier.de/xml/
20. X. Yang, M. Lee and T. Ling. Resolving Structural Conflicts in the Integration of

XML Schemas: A Semantic Approach. In Proc. of ER2003, papges 520-533, 2003.
21. K. Zhang and D. Shasha. Simple Fast Algorithm for the Editing Distance Be-

tween Trees and Related Problems. SIAM Journal of Computing, 18(6):1245-1262,
December 1989.

22. K. Zhang and D. Shasha. Tree Pattern Matching. Pattern Matching Algorithms,
chapter 11. Oxford University Press, 1997.

