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Design Method for 2-Channel Signal Word Decomposed Filters with
Minimum Output Error and Their Effective VLSI Implementation

Kouhei HOSOKAWA†a), Member, Mitsuhiko YAGYU††, Nonmember, and Akinori NISHIHARA†††, Fellow

SUMMARY This paper proposes hardware-efficient VLSI architec-
tures for 2-channel signal word decomposed filters (2-ch SWDFs) and their
design method in consideration of the implemented circuit size. By consid-
eration of the circuit size in design method, 2-ch SWDFs with a minimum
output error among SWDFs whose size is equal to or smaller than a spec-
ification can be designed. Canonical Signed Digit expressions are used to
effectively represent the filter coefficients of the SWDFs in order to make
its circuit size small. Through precise analysis of the internal structures,
circuit size can be accurately estimated. Some design examples show that
the proposed method can design filters whose output error is about −12 dB
lower than that of the linear FIR filters. Compared to an exhaustive search
method, our method is much faster and can design filters whose output er-
rors are only about 2 dB more.
key words: signal word decomposed filters, VLSI architecture, transistor
count

1. Introduction

1.1 Background

In digital signal processing, output signals of FIR filters are
often rounded off, when, for example, the wordlength of the
output signal is too long for a permissible noise given by
specifications. We have proposed filters to aggressively in-
corporate this round-off operation into the FIR filters [1],
[2]. These filters are called signal word decomposed filters
(SWDFs) (see Fig. 1). Although an SWDF has nonlinear op-
erations, the upper bound of its output error spectra for any
input signal can be theoretically calculated. Then the bound-
ary spectrum can be minimized and shaped by optimization
in the frequency domain, and its peak can be far less than
the peak output error of conventional FIR filters which carry
out exact convolution, with the same circuit size. Besides,
by that shaping, some priority can be given to minimizing
the boundary spectrum in specified frequency bands.

References [1] and [2] showed that a hardware cost of
SWDFs implemented as wired-logic can be less than that
of the conventional FIR filters with the same output error.
However, in the case where SWDFs are implemented as pro-
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Fig. 1 Parallel structure of 2-ch SWDF with symmetric coefficients.

cessor, SWDFs need more multiplication and addition in-
structions in principle than the conventional FIR filters do.
Therefore, in Refs. [1], [2], and this paper, we implement
an SWDF as the wired-logic employing full-adders, half-
adders, and flip-flops, and evaluate the transistor count as
the hardware cost.

In Refs. [1], [2], a simple arithmetic model is used to
evaluate circuit size of SWDFs when designing a filter.
However, these design methods cannot always design the
optimum SWDFs, since this simple arithmetic model some-
times does not reflect an actual circuit size. To solve this
problem we propose a method which uses an expression to
estimate the transistor count that will be used in SWDFs.

1.2 Paper Organization

In Sect. 2, the variables used in this paper are defined, and
we give a brief description of SWDFs output error. In addi-
tion, the output error of SWDFs is discussed.

In Sect. 3, a hardware-efficient architecture of SWDFs
is proposed. This makes it possible to accurately estimate
the transistor count of SWDFs.

In Sect. 4, an expression that estimates the transistor
count of SWDFs is derived in terms of taps Ti and the max-
imum coefficient wordlength ci of each subfilter. Because,
as is shown in Sect. 2, the output error can be written as a
function of Ti and ci.

In Sect. 5, a design method to minimize the output er-
ror of SWDFs under the transistor count given by specifica-
tions is proposed. Finally, in Sect. 6, filters designed by the
proposed method are compared with those designed by the
Remez exchange algorithm [3].

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



HOSOKAWA et al.: DESIGN METHOD AND VLSI-IMPLEMENTATION OF 2-CHANNEL SIGNAL WORD DECOMPOSED FILTERS
2045

(a) Full-adder (28 Tr). (b) Half-adder (16 Tr).

Fig. 2 Conventional complementary CMOS circuits of full-adder and
half-adder.

1.3 Assumptions

In this paper, we deal with 2-channel SWDFs, and the two
subfilters are assumed to have the same constant group de-
lay. The input signal is expressed by two’s complement
fixed number, and all filters will be designed not to have
overflows. It is further assumed that CF ≤ 2×CH where CF

is the transistor count of one full-adder and CH is that of one
half-adder. The full-adder and half-adder circuits shown in
Fig. 2 are used in evaluating the transistor count [4].

The output error is defined as a peak output error in the
passband and stopband for any input signal. Such SWDFs
can be applied to a prefilter of an IFIR filter [5] and a fre-
quency response masking filter [6].

From Ref. [1], the number of taps Ti (i = 1, 2) satisfies
T1 ≥ T2 and the coefficient wordlength ci satisfies c1 ≥ c2.

2. Output Error of SWDFs

Figure 1 shows a block diagram of a 2-ch SWDF which con-
sists of two linear-phase FIR filters F1 and F2.

The �-bit input signal is decomposed into two signals
by the two quantizers Q1 and Q2. Q1 generates high �1 bits
with a sign bit from the �-bit input signal, likewise Q2 gen-
erates the remaining low �2 = � − �1 bits. These generated
signals are processed by subfilters Fi, and the output signals
of the subfilters are added together to produce the overall
output.

Next, the zero-phase frequency response of the subfil-
ter Fi is defined as Hi(ω) = D(ω) + Ri(ω), i = 1, 2, where
D(ω) is the ideal zero-phase frequency response given by
specifications and Ri(ω) is its error response. From [1], the
peak of the maximum output error Rworst(ω) is

Rworst(ω) = r1|R1(ω)| + r2|R2(ω)|, (1)

where ri is the maximum amplitude of input signal of sub-
filter Fi.

From the assumption in Sect. 1.3, the output error of
SWDFs is defined as a peak of Rworst(ω), that is,

ep
def
= max
ω∈ passband and

stopband

Rworst(ω). (2)

Here, the upper bound of Eq. (2) will be consid-
ered. The coefficients of SWDFs are rounded off when the
SWDFs are implemented in a real chip. In consideration of
this fact, Eq. (2) is

ep ≤
∑
i=1,2

ri max
ω∈ΦS

|Hi(ω) − D(ω)| (3)

≤
∑
i=1,2

ri max
ω∈ΦS

|Hi(ω) − H∗i (ω)|

+
∑
i=1,2

ri max
ω∈ΦS

|H∗i (ω) − D(ω)|, (4)

where H∗i (ω) is the zero-phase frequency response of the
subfilter Fi with unrounded coefficients, and ΦS is a set of
frequency points in the specified passband and stopband.

Furthermore, from [7], the first term in the inequal-
ity (4) can be written as

max
ω∈ΦS

∣∣∣Hi(ω) − H∗i (ω)
∣∣∣ � 21−ci

√
2Ti − 1

3
. (5)

According to Ref. [1], suboptimal filter coefficients of the
subfilter can be obtained by application of the Remez ex-
change algorithm [3] to the given Ti and ci. From this fact
and Ref. [8], the second term in the inequality (4) can be
approximated to

max
ω∈ΦS

∣∣∣H∗i (ω) − D(ω)
∣∣∣ ≈ 10

αTi+β
20 , (6)

where α and β are constants that depend on the cut-off fre-
quency.

By substitution of the inequality (5) and Eq. (6) into the
inequality (4), ep is

ep � ẽp =

2∑
i=1

ri

10
αTi+β

20 + 21−ci

√
2Ti − 1

3

 . (7)

We use ẽp in the inequality (7) as the estimation expres-
sion for the output error of SWDFs. However, The inequal-
ity (7) is only used at the designing stage of SWDFs, and
Eq. (2) is used when the output error of SWDFs is evalu-
ated.

3. Hardware-Efficient Architecture for 2-Ch SWDFs

In this section, a hardware-efficient architecture for 2-ch
SWDFs is proposed. This architecture is used throughout
this paper for the design of SWDFs and the derivation of ex-
pressions that estimate transistor count. Figures 3(a) and (b)
show hardware-efficient design examples of the direct and
transposed forms of SWDFs in Fig. 1.

From these figures, it is seen that both the direct and
transposed forms of SWDFs consist of 4 components—
multiplier and adder structures (MASs), two-input adders,
multi-input adders, and delays. The multipliers in Fig. 3 can
be regarded as MASs whose one coefficient is 0.

The techniques based on sharing adders among MASs
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(a) Direct form. (T1 = 7, T2 = 3)

(b) Transposed form. (T1 = 7, T2 = 3)

Fig. 3 Direct and transposed forms of 2-ch SWDF in Fig. 1.

(e.g. [9], [10]) can reduce the total number of adders em-
ployed in a digital filter and may be applicable also to this
SWDF architecture. In order to synthesize a 2ch-SWDF
architecture by using those techniques, however, we need
other algorithm for the synthesis since currently our SWDF
architecture is precisely optimized at gate level. Those tech-
niques do not optimize the gate counts, but simply optimize
just the number of adders in the signal flow graph. In the
future, we will consider the application of those techniques
to the SWDF. In addition, those techniques can reduce the
number of adders but do not uniquely determine its gate
level structure. Therefore the conventional filter architec-
ture which is optimized by the techniques [9], [10] cannot
be simply compared with our optimized 2ch-SWDF archi-
tecture. We will also demonstrate this comparison in the
future.

Here, we will describe a design method of these 4 com-
ponents to minimize their transistor count by using full-
adders, half-adders, and D-flip-flops. The design method of
MASs is described at first, and that of the multi-input adder
(including two-input adders) is described next. An N-bit de-
lay can be constructed by N D-flip-flops.

(a) Example of multipliers and multiplicands.

(b) Transform subtractions into additions.

(c) Reduce additions.

Fig. 4 Design example for MAS using by CSD coefficients.

3.1 MAS Structure

The canonical signed digit (CSD) expression [4] is applied
to all coefficients of each multiplier in order to reduce the
transistor count for MASs. The algorithm [12] can reduce
the size of MASs more than CSD algorithm. However, for
the same reason as [9], [10], the application of this algorithm
to MASs is an issue in the future. Figure 4 is an example of
synthesizing the CSD-based MAS. In this figure, the MAS
multiplies the input signals X and X′ by the coefficients c
and c′, respectively, followed by the addition of cX and c′X′.

The CSD expression of the coefficient (Fig. 4(a)) in-
cludes several negative bits. This example is effectively im-
plemented by only using full-adders and half-adders as fol-
lows.

First, the bits with negative weight in Fig. 4(a) are
transformed to Fig. 4(b) by introduction of bit-inversions
and an addition of a constant “1.” This utilizes the fact
that the negative number · · · 0000(−x)(2), x ∈ {0, 1} can be
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Fig. 5 Multi-input adder that realizes Fig. 4(c).

Fig. 6 Synthesis examples of a partial adder with 8 inputs.

transformed to · · · 0000(−x)(2) = · · · 1111x(2) + · · · 00001(2),
where x represents inversion of x [11].

Next, Fig. 4(c) is obtained by summing up the constant
numbers in Fig. 4(b). The constant numbers in all MASs of
SWDFs can be calculated in advance, since the constant in
Fig. 4(c) is independent of its input signal. Therefore in our
proposed architecture, the sum of constant numbers in all
MASs is added once at the output of SWDFs. In Fig. 3, this
constant number is given as “supplementary constant.”

Next, the operation without the constant numbers in
Fig. 4(c) can be regarded as a multi-input adder. Therefore,
a MAS in Fig. 4(c) can be effectively implemented by appli-
cation of the design method for multi-input adders described
in the next section.

3.2 Multi-Input Adder Structure

From the previous section, MASs with CSD coefficients can
be regarded as multi-input adders. The two-input adders are
naturally a kind of multi-input adders. Therefore, all three
components except delays—MASs, multi-input adders, and
two-input adders—are effectively implemented by using the
design method for multi-input adders described below.

By using an example, the effective implementation of
multi-input adders will be described below. Figure 5 shows
a multi-input adder to realize Fig. 4(c) without the constant
number. The multi-input adder can be implemented by cas-
cade connections of partial adders shown in Fig. 6. A partial
adder calculates the summation of all input signals to pro-
duce a 1-bit sum and several carry signals. There are many
implementations for a partial adder, since a full-adder can
be implemented by two half-adders as shown in Fig. 6. The

Table 1 Optimization problem to obtain the multi-input adder with min-
imum transistor count.

Minimize CF

M∑
p=1

NF (p) +CH

M∑
p=1

NH (p),

Subject to 2NF (M) + NH (M) = X(M) − 1, (11)

2NF (p) + NH(p)

= X(p)+NF (p + 1)+NH(p + 1)−1

for p = 1, · · · ,M − 1,

and

all the variables should be integers.

multi-input adder with minimum size among many imple-
mentations can be found as follows.

First, a partial adder with X + Y inputs that constructs
one digit is considered, where X is the number of input sig-
nals except carry signals and Y is the number of carry sig-
nals from one digit less than that. Then, relating to a partial
adder, we obtain the following three equations

(transistor count for a partial adder)

= CF NF +CHNH , (8)

(the number of carries)

= NF + NH , (9)

and 2NF + NH = X + Y − 1, (10)

where the number of full-adders is NF , the number of half-
adders is NH , and the transistor counts for a full-adder and a
half-adder are CF and CH , respectively.

Next, an M digit multi-input adder is considered. The
number of full-adders at each partial adder is defined as
NF(p), p = 1, · · · ,M, and that of half-adders is defined
as NH(p). In addition, X(p) is defined as the number of in-
put signals at the p-th partial adder which does not include
the carry signals from the low-order digit. For example,
X(7) = 3, X(8) = 2 in Fig. 5. As mentioned above, the
optimization problem to minimize the transistor count for a
multi-input adder can be written as Table 1.

A multi-input adder with the least transistor count can
be obtained by solving the optimization problem given by
Table 1. It is found that a multi-input adder with the max-
imum number of full-adders is the best structure with the
least transistor count since CF ≤ 2 × CH is assumed in this
paper.

4. Transistor Count Estimation of SWDFs

In this section, expressions that estimate the transistor count
for each component of SWDFs are derived. Estimation ex-
pressions are classified according to whether these expres-
sions depend on the filter coefficients or not. The expres-
sions that do not depend on the filter coefficients—the de-
lays and two-input adders in direct form—can be derived
theoretically. Contrariwise, it is difficult to theoretically
derive the other expressions—MASs, a multi-input adder
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in direct form, delays and two-input adders in transposed
form—, since these expressions become clearly very com-
plex and non-linear functions. Therefore, we introduce an
approximation method.

In our approximation method, at first, several SWDFs
are designed by the Remez exchange algorithm by the ap-
propriate sets of ci and Ti. Next, this approach approximates
the transistor count obtained at the first step by the function
of ci and Ti. At this time, the least-square method is used.

Hereafter, the estimation expressions are explained
separately for the direct and transposed forms.

4.1 Direct Form

In this subsection, the equations that estimate the transistor
count for each component in the direct form SWDFs are
derived separately.

4.1.1 Transistor Count of Delays

It is clear that the transistor count for delays in direct form
is independent of the SWDFs filter coefficients. Therefore,
the transistor count Cdelay-line is

Cdelay-line

=

 CDFF

(
� (T1 − 1) − �2 T1 − T2

2

)
, T2 > 0

CDFF �1(T1 − 1), T2 = 0
(12)

where CDFF is the transistor count for a D-flip-flop, and �i is
the wordlength of input signal of subfilter Fi.

4.1.2 Transistor Count of Two-Input Adders

It is clear that the input wordlength of two-input adder is �i
which is independent of the SWDFs filter coefficients. The
transistor count for two-input adders is

2∑
i=1

(CF(�i − 1) + CH)
⌊Ti

2

⌋
. (13)

However, it is difficult to treat the floor function in Eq. (13)
correctly in the optimization problem because of its discon-
tinuities. Therefore, we simply approximate the above by
eliminating the floor function as follows;

Cadder =

2∑
i=1

(CF(�i − 1) +CH)
Ti

2
. (14)

4.1.3 Transistor Count of MASs

As we mentioned earlier, it is difficult to estimate the cor-
rect transistor count for MASs since MASs depend on the
filter coefficients. The estimation expression for the transis-
tor count for MASs is obtained by using a number of design
samples by the algorithm in Table 2. Then, the number of
design samples to obtain the expression can be written as

Table 2 Approximation method for MAS.

for(c1 = c1s; c1 < c1e; c1+=c1step){
for(c2 = c2s; c2 < c2e; c2+=c2step){
for(t1 = t1s; t1 < t1e; t1+=t1step){
for(t2 = t2s; t2 < t2e; t2+=t2step){
MAS[t1][t2] = Calculate MAS size(c1, c2, t1, t2);
}

}
temp[c1][c2] = first order

approximation(MAS);⇐ approximation 1
}

}
M = first order approximation(temp);⇐ approximation 2

(a) Transistor count for the SWDF’s MASs that are designed with
various T1, T2. The c1 = 14, c2 = 8, passband is 0–0.2, and
stopband is 0.25–0.5.

(b) An example of how t1(c1, c2) changes.

Fig. 7 Approximation example of MASs transistor count.

2∏
i=1

cie − cis

cistep
×

2∏
i=1

tie − tis
tistep

. (15)

The reason the expression is obtained by the two steps in
Table 2 is that we can easily confirm the approximation ac-
curacy in each step.

At first, Fig. 7(a) shows how the transistor count for
MASs varies when T1 and T2 are varied at (c1, c2) = (14, 8).
As shown in Fig. 7(a), the transistor count for MASs can be
approximated by a first order plane

CMAS = t1(c1, c2)T1 + t2(c1, c2)T2 + t3(c1, c2). (16)

This figure shows the validity of “approximation 1” in Ta-
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ble 2. We define Eq. (16) as the estimation expression for
MASs transistor counts when c1 and c2 are fixed.

Next, Fig. 7(b) shows how t1(c1, c2) varies when c1 and
c2 are varied. As shown in the figure, t1(c1, c2) can be ap-
proximated by a first order plane

t1(c1, c2) = M11c1 + M12c2 + M13. (17)

This figure shows the validity of “approximation 2” in Ta-
ble 2. The t2 and t3 can also be approximated by first order
planes.

From the facts mentioned above, the following equa-
tion is obtained by substituting Eq. (17) into Eq. (16)

CMAS = (MC)T T, (18)

where each element of M is defined as Mi j in Eq. (17), C
is [c1 c2 1]T , and T is [T1 T2 1]T . We define Eq. (18) as the
estimation equation for MASs transistor count when T2 > 0.

However, the most suitable SWDFs sometimes do not
have a subfilter F2, that is, this filter is only composed of
the subfilter F1. Then the transistor count for MASs can
be approximated accurately by the second order function of
c1 and T1. We estimate the transistor count for MASs by
another function (M′11c1 + M′13)T1 + (M′31c1 + M′33) when
T2 = 0.

As mentioned above, the estimation equation for MASs
transistor counts can be written as

CMAS =

{
(MC)T T, T2 > 0
(M′C)T T, T2 = 0,

(19)

where each element of M′ is M′i j, and M′12, M′32, and
M′2 j, j = 1, 2, 3 is defined as 0.

4.1.4 Transistor Count of a Multi-Input Adder

As we mentioned earlier, similarly to MASs, the transistor
count for the multi-input adder is expressed by the approx-
imation function since its transistor count depends on the
filter coefficients. However, unlike MASs, the problem to
obtain the approximation function of the estimation expres-
sion for SWDF’s multi-input adder can be reduced to the
problem of the linear FIR filter which is not decomposed so
that the number of design samples to obtain the approximate
function is reduced. Hereafter, the term “linear FIR filter” is
used to mean a linear phase FIR filter which is not decom-
posed. Therefore, compared with that of MASs, the number
of design samples to obtain the estimation expression can be
dramatically decreased to

ce − cs

cstep
× te − ts

tstep
. (20)

The transistor count for the multi-input adder depends
on the wordlength and the number of input signals. The
wordlength of multi-input adder’s input signal, that is, the
wordlength of MAS’s output signal will be considered be-
low. The number of input signals is T1 from Sect. 1.3.

Figure 8 describes the wordlength of MAS’s output

Fig. 8 Output wordlength of an MAS in direct form.

Fig. 9 Transistor count of each element in a direct form linear FIR filter
with c = 14, l = 16, passband is 0–0.2, and stopband is 0.25–0.5.

signal in direct form. The two input signals X and X′
are the same as the output of two-input adders. So, their
wordlengths are �1+1 and �2+1 bits, respectively. If T2 = 0
or c1 ≥ �2 + c2, that is, �1 + c1 + 1 ≥ �1 + �2 + c2 + 1, the
wordlength of MAS’s output signals is �1 + c1 + 1 bits from
Fig. 8. Contrariwise, if T2 > 0 and c1 < �2 + c2, that is,
�1 + c1 + 1 < �1 + �2 + c2 + 1, the wordlength of MAS’s
output signals is �1 + �2 + c2 + 1 bits.

(1) In the case of T2 = 0 or c1 ≥ �2 + c2

If the multi-input adder of SWDFs meets this condition, the
wordlength of multi-input adder’s input signal is �1 + c1 + 1
bits and the number of input signals is T1. It can be inferred
that the transistor count for the multi-input adder of SWDFs
is the same as the multi-input adder in a T1-tap linear FIR
filter whose input signal and coefficient wordlength are �1
and c1 bits, respectively. This is because the wordlength
and number of input signals in the multi-input adder of this
linear FIR filter are �1 + c1 + 1 bits and T1, respectively.

From Fig. 9, the transistor count for the multi-input
adder in this linear FIR filter can be approximated by a1(T1−
1). In addition, a1 can be approximated by a1 = u1c1 + u2

since a1 varies as shown in Fig. 10 when c1 varies. There-
fore, the transistor count for the multi-input adder of this
linear FIR filter, that is, the transistor count for the multi-
input adder of SWDFs can be written as

(u1c1 + u2)(T1 − 1). (21)

In the case of SWDFs, there is a possibility that c′X′ in
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Fig. 10 The variation of a1 in a linear FIR filter.

Fig. 8 becomes 0. However, the output wordlength of MAS
is not changed in this case since the output wordlength of
MASs is only decided by cX. Therefore, it is not necessary
to consider the effect of c′X′ = 0 in this case.

(2) In the case of T2 > 0 and c1 < �2 + c2

Contrariwise, from Fig. 8, the wordlength of the output sig-
nal of MASs is �1 + �2 + c2 + 1 bits in the case of T2 > 0 and
c1 < �2 + c2. From the same explanation mentioned above,
it can be inferred that the transistor count for the multi-input
adder in SWDFs is the same as the multi-input adder in a
T1-tap linear FIR filter whose input signal and coefficient
wordlength are �1 + �2 and c2 bits, respectively. Therefore,
the transistor count for multi-input adder can also be written
as

(u′1c2 + u′2)(T1 − 1). (22)

However, unlike the previous case, the (�1 + �2 + c2 +

1)− (�1 + c1 + 1) = �2 + c2 − c1 bits among the output signal
of MASs with c′X′ = 0 are fixed to 0. And, the number of
MASs with c′X′ = 0 is (T1−T2)/2. Therefore, the transistor
count for the multi-input adder in SWDFs can be written as

(u′1c2 + u′2)(T1 − 1) − ∆, (23)

where ∆ is the effect of the MASs with c′X′ = 0. It will
be explained in Appendix that ∆ can be written as a second
order function of c1, c2, T1 and T2.

(3) Summary

As mentioned above, the estimation expression of transistor
count for the multi-input adder Cadder-line can be written as

Cadder-line

=


(u′1c2 + u′2)(T1 − 1) − ∆ for T2 > 0 and

c1 < �2 + c2

(u1c1 + u2)(T1 − 1) otherwise
(24)

4.1.5 Summary of Direct Form

From Eq. (12), (14), (19) and (24), the estimation expression
for direct form can be written as

CDFF + Cadder +CMAS + Cadder-line. (25)

Equation (25) is the second order function of c1, c2, T1 and
T2.

4.2 Transposed Form

In this section, the estimation expression for transistor count
of the transposed form of SWDFs is derived. In the case of
the transposed form, the analysis method used in direct form
can be used. The different points in the transposed form are
the estimation expressions for delays and two-input adders.
In the case of MASs, the method used in direct form can be
used without modification.

4.2.1 Transistor Count of Delays and Two-Input Adders

These equation can be obtained by using the similar method
for the multi-input adder in direct form.

(1) In the Case of T2 = 0 or c1 ≥ �2 + c2

In this case, the wordlength of MASs output signal is �1 + c1

bits. Therefore, it can be inferred that the transistor counts
for delays and two-input adders in SWDFs are the same as
these delays and two-input adders in a T1-tap linear FIR fil-
ter whose input signal and coefficient wordlength are �1 and
c1 bits, respectively.

As shown in Fig. 11(a), the transistor count for each
element in a linear FIR filter can be approximated accu-
rately by a first order function. In addition, Fig. 11(b) shows
how the approximate coefficient varies when its coefficient
wordlength varies. From this figure, the approximate coeffi-
cients can also be approximated by a first order function.

In the case of c′X′ = 0, similarly to direct form,
the transistor count of delays and two-input adders are not
changed since the wordlength of MAS’s output signal is not
changed.

(2) In the Case of T2 > 0 and c1 < �2 + c2

Contrariwise, the wordlength of the output signal of MASs
is �1 + �2 + c2 bits in the case of T2 > 0 and c1 < �2 + c2.
Therefore, it can be inferred that the transistor counts for
the delays and two-input adders in SWDFs are the same as
the delays and two-input adders in a T1-tap linear FIR filter
whose input signal and coefficient wordlengths are �1 + �2
and c2 bits, respectively.

However, if a MAS with c′X′ = 0, the lower (�1 + �2 +
c2) − (�1 + c1) = �2 + c2 − c1 bits of a MAS’s output signal
are fixed to 0. Therefore, it can be inferred that the transistor
count for the delays is decreased from the linear FIR filter
by CDFF(�2 + c2 − c1)(T1 − T2)/2 since the number of MASs
with c′X′ = 0 is (T1−T2)/2. Likewise, it can be inferred that
the transistor count for the two-input adders is decreased by
CF(�2 + c2 − c1)(T1 − T2 − 1) transistors.

(3) Summary

As mentioned above, the estimation expression for delays is
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(a) Each element’s transistor count in the transposed form of linear
FIR filter.

(b) Variation of the approximate coefficient of 2-input adder in the
transposed form of linear FIR filter.

Fig. 11 Figures are related to the transistor count in the transposed form
of linear FIR filter.

Cdelay-line

=


(d′1c2 + d′2)(T1 − 1) − ∆d for T2 > 0 and

c1 < �2 + c2

(d1c1 + d2)(T1 − 1) otherwise
(26)

where ∆d is equal to CDFF(�2 + c2 − c1)(T1 − T2)/2.
Likewise, the estimation equation for two-input adders

is

Cadder

=


(a′1c2 + a′2)(T1 − 1) − ∆a for T2 > 0 and

c1 < �2 + c2

(a1c1 + a2)(T1 − 1) otherwise
(27)

where ∆a is equal to CF(�2 + c2 − c1)(T1 − T2 − 1).

5. Formulation of Optimization Problem

As mentioned above, the optimization problem to obtain
the SWDF that has a minimum output error among SWDFs
whose transistor count is below Ac, which is given by spec-
ification, can be formalized as

Minimize
2∑

i=1

ri

10
αTi+β

20 + 21−ci

√
2Ti − 1

3


Subject to c1 ≥ c2, T1 ≥ T2 (28)

Cdelay-line + Cadder +Cadder-line

+CMAS ≤ Ac

where Cadder-line is 0 in the transposed form.
However, Eq. (28) is decomposed into three optimiza-

tion problems since Cdelay-line,Cadder,Cadder-line and CMAS have dis-
continuity. Therefore, the solution of Eq. (28) is the solution
with a minimum output error among the three optimization
problem’s solutions.

6. Design Example

In this section, the transistor count and output error of
SWDFs designed by two methods—the proposed method
and the exhaustive search algorithm—and those of the lin-
ear FIR filter are compared. In the proposed method, we use
the MATLAB optimization toolbox [15] to solve the non-
linear optimization problem in Eq. (28).

In the exhaustive search algorithm, we first design
all SWDFs by using all conceivable taps and coefficient
wordlengths. Next, the SWDF that has a minimum tran-
sistor count is selected and plotted among the SWDFs that
meet the output error of the specification. Through this al-
gorithm, the specification of the output error is updated in
increments of 1 dB in each design.

6.1 Design Specifications

The design specifications are that �1, �2 are 8 bits, passband
is 0.0–0.2, and stopband is 0.25–0.5. In addition, the tran-
sistor count for a full-adder, half-adder, D-flip-flop, and an
inverter are assumed to be 28, 16, 16, and 2, respectively.

The designed filters, including SWDFs and linear FIR
filters, are estimated by using EX-OR logic to calculate the
sum at the MSB in all adders, since full-adders and half-
adders waste the transistor count here. Then, the transistor
count for 2-input EX-OR and 3-input EX-OR are assumed
to be 12 and 22, respectively.

6.2 Proposed Method

The proposed method uses 527 design samples to obtain the
approximate expressions. That is, c1step, c2step, t1step, and
t2step in Table 2 are 5. In the proposed method, SWDFs are
designed by Ac in increments of 10000 in Eq. (28).

6.3 Results

Figure 12 shows the SWDFs and linear FIR filters whose
output error is in the range from about −80 dB to −125 dB.

From these figures, we found that the proposed method
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(a) Error ep vs. transistor count in direct form.

(b) Error ep vs. transistor count in transposed form.

Fig. 12 Comparison of filters designed by the proposed methods and the
linear FIR filters.

can design an SWDF whose output error is about −12 dB
lower than that of the linear FIR filters with the same transis-
tor count. In other words, the transistor count of the SWDFs
designed with the proposed method are about 18% less than
that of the linear FIR filters with the same output error.

In addition, the proposed method can design SWDFs
that are close to the optimum filters (exhaustive-search al-
gorithm). The average output error difference between the
proposed and optimum SWDFs is only about 2 dB.

Tables 3 and 4 show the computing time for each
design when the Intel Xeon 2.4 GHz processor is used.
Compared to the Remez exchange algorithm, the proposed
method consumes larger computing time. However, the pro-
posed method can design SWDFs in practical computing
time, and about 4350 times faster than the exhaustive search
algorithm.

Table 3 Comparison of computing time among all algorithms in direct
form.

Method Time (sec)

Remez < 1
Proposed 7.15

Exhaustive Search 30987

Table 4 Comparison of computing time among all algorithms in trans-
posed form.

Method Time (sec)

Remez < 1
Proposed 6.98

Exhaustive Search 30375

Fig. 13 Estimation error distribution of Eq. (28).

6.4 Estimation Error of Transistor Count

In this section, the difference between the transistor count
estimated by Eq. (28) and actually evaluated transistor count
is considered. Figure 13 shows the estimation errors in the
direct and transposed forms in 144 and 179 design exam-
ples, respectively.

The average of the estimation error is 2.75% in direct
form, and 5.61% in transposed form. This result shows that
the estimation error of transposed form is worse than that of
direct form. We conjecture the reason that the transposed
form has more components which depend on the filter coef-
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ficient than the direct form does.

7. Conclusion

In the conventional SWDF design method, a simple arith-
metic model is used to evaluate circuit size. However, these
design methods cannot always design most suitable SWDFs,
since such simple arithmetic models sometimes are based on
inaccurate assumptions and so sometimes seriously degrade
the estimation of actual circuit size.

In the proposed method, this problem is solved by us-
ing a correct size model. First, the hardware-efficient ar-
chitecture was introduced to implement an SWDF, and a
method to accurately estimate its circuit size was proposed.
Next, the circuit size for each sub-component of the SWDF
was considered, and then an expression to estimate its sub-
component was derived from the coefficient wordlength and
taps of the SWDF. Through this proposed estimation, the
proposed method can design SWDFs whose output error is
about −12 dB lower than that of conventional linear FIR fil-
ters. In addition, the average output error difference between
the proposed and optimum SWDFs is only about 2 dB.

At the optimization problem in this paper, the coeffi-
cient wordlength and taps are treated as real number. There-
fore, the solutions in this optimization problem are rounded
off. In the future, the optimization problem will be solved
as an integer optimization problem. In addition, we will re-
search that coefficients of each subfilter will be optimized
directly over the discrete space by fully utilizing the design
freedom.
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Appendix: Estimation of Decreased Transistor Count
of an Multi-Input Adder

In this section, ∆ in Eq. (23) is considered. This ∆ results
from decreasing the output wordlength of MAS from �1 +
�2 + c2 + 1 to �1 + c1 + 1 bits, since its lower bits are fixed to
zero.

A.1 Decreased Transistor Count by Fixing One Bit to Zero
in a Multi-Input Adder

At first, the decreased transistor count is considered when
one bit at d-th digit from MSB is fixed to 0 among the input
signals of the multi-input adder.

At first, we consider the d-th partial adder. In this par-
tial adder, the number of half-adders is one and the rest are
full-adders if the number of input signals including carry
signals is even. Contrariwise, if the number of input signals
is odd, this partial adder consists of only full-adders, that is,
there is no half-adder.

If the probability that the number of input signals is
even is assumed to 1/2, the transistor count decreases by
(CF −CH)/2+CH/2 = CF/2 because one bit is fixed to zero
at d-th partial adder. In addition, the carry signals to the
(d − 1)-th partial adder decrease by 1 with a 1/2 probability.
That is, the number of input signals at the (d − 1)-th partial
adder decrease by 1 with a 1/2 probability. By recursively
iterating this process, the transistor count decreases by

CF

2

d−1∑
n=0

1
2n
, (A· 1)

in the case that one input signal at the d-th partial adder is
fixed to 0.

From Fig. 8, the bit place of d meets

d ≥ l1 + c1 + 2. (A· 2)

That is, d is large enough. Therefore, Eq. (A· 1) can be writ-
ten approximately as

lim
d→∞

CF

2

d−1∑
n=0

1
2n
= CF . (A· 3)



2054
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.8 AUGUST 2005

The decreased transistor count is CF if one input signal
at multi-input adder is fixed to 0.

A.2 Value of ∆

In direct form, the number of input signals fixed to 0 at
multi-input adders is

T1 − T2

2
× (�2 + c2 − c1).

Therefore, the ∆ in Eq. (23) can be written as

∆ = CF × (l2 + c2 − c1)
T1 − T2

2
. (A· 4)
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