
論文 / 著書情報
Article / Book Information

Title A Failure-Aware Model for Estimating and Analyzing the Efficiency of
Web Services Compositions

Author Neila BEN LAKHAL, Takashi Kobayashi, Haruo YOKOTA

Journal/Book name Proc. of IEEE 11th Intl Symposium on Pacific Rim Dependable
Computing (PRDC2005), , , pp. 114-121

Issue date 2005, 12

DOI http://dx.doi.org/10.1109/PRDC.2005.6

URL http://www.ieee.org/index.html

Copyright (c)2005 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/PRDC.2005.6
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

A Failure-Aware Model for Estimating and Analyzing the Efficiency of Web
Services Compositions

Neila Ben Lakhal†, Takashi Kobayashi‡ and Haruo Yokota†‡
†Tokyo Institute of Technology, Department of Computer Science

‡Tokyo Institute of Technology, Global Scientific Information and Computing Center
2-12-1 Oh-Okayama, Meguro-ku Tokyo, 152-8552 Japan

Phone: +81-3-5734-3505 , Fax: +81-3-5734-3504
Email: neila@de.cs.titech.ac.jp, {tkobaya, yokota}@cs.titech.ac.jp

Abstract

More and more within the last couple of years, there is a
recognition that the Web services composition concept will
constitute a major breakthrough and will revolutionize the
way we deal with integrating disparate and distributed com-
puting environments. Yet, to rise to such a position, a chief
concern is to guarantee a high-dependability level of the
Web services compositions, which is significantly critical,
specially in view of the particularities of the Web services
environment(unpredictability, heterogeneity, autonomy), if
confronted with other computing environments.

Our present work falls within this context since we tackle
the problem of QoS (Quality of Service) in the Web ser-
vices context by verifying to what extent fault-tolerant and
dynamically-executed Web services compositions are effi-
ciently serving their purposes. And in pursuing this goal, we
introduce a novel model that characterizes, estimates and
analyzes several QoS properties of dynamically-executed
fault-tolerant Web services compositions–namely the reli-
ability and the execution time.

Our model allows acquiring more accurate estimations
since it confers a paramount importance to the repercus-
sions of failures. In addition, contrary to other QoS esti-
mations models in the Web services context, which use QoS
estimations published in UDDIs by the Web Services own-
ers/providers, our model computes QoS estimations on the
base of the compositions execution observations, where the
observation results are collected in a history.

Finally, since Web services are stateless, tracking the
failures and determining their locations is almost impos-
sible. To overcome this limitation, we propose to attach to
each of the composition’s component a state. In doing so,
obtained estimations can contribute in acquiring more ac-
curate information about the failures locations and can be
used later to improve the composition QoS in the future.

1. Introduction
Over the last couple of years, the Web services architec-

ture has gained a rapid uptake as it embodies the concept of
full-interoperability. Its key enablers are a set of developer-
friendly standards (e.g., SOAP, UDDI, WSDL) which do
not involve a whole learning curve as it is for other distrib-
uted architectures.

However, Web services (WSs), if they are individually
considered, they tend to be limited in their offered capabil-
ities. Thereby, the requirement to bring them together, in
a consistent manner, to create more elaborated functionali-
ties, in the form of Web services compositions (WSCs), has
been unveiled.

To date, a significant amount of research efforts has been
reported in the field of WSCs. Specifically, there are many
approaches dealing with assembling basic WSs into com-
posite ones[1][2][3]. In addition, there are already vari-
ous platforms that are compliant with the WSs architec-
ture (e.g.,.NET, J2EE, AXIS). Besides, the emergence of
many popular specifications: BPEL4WS, BPML, DAMLS
to name but a few, has been widely noticed as well.

Yet the WSC concept is still young; and to rise to the op-
portunity of becoming the de facto solution for disparate
and distributed computing environments integration, defin-
ing solely the behavior of the composed services and deal-
ing only with their coordination is insufficient. There are
clearly a number of other significant challenges to con-
sider. In particular, due to the specificity of the WSs ar-
chitecture (i.e. dynamism, unpredictability, heterogeneity,
autonomy) and to the obvious limitations of the Inter-
net, any composition has to satisfy a high-dependability
level that requires defining vigorous fault-tolerance mecha-
nisms.

So far, in our previous work[3][4], we have addressed
one of the aforementioned challenges that relates to the
specification and execution of fault-tolerant WSCs by defin-
ing proper failure information and handling mechanisms.

This paper tackles the problem from a different angle
by verifying to what extent fault-tolerant WSCs are effi-
ciently serving their purposes, upon execution, by assessing
their QoS properties. In pursuing this goal, we introduce a
novel model that characterizes, estimates and analyzes sev-
eral QoS properties of dynamically-executed faut-tolerant
WSCs, namely the reliability and the execution time.

Contrary to most of the current approaches dealing with
QoS estimations in the WSs context, which rely on the QoS
information advertised by the WSs owners/providers, our
model computes QoS estimations on the base of the WSCs
executions observations, where the observation results are
collected in a history. In doing so, more accurate estima-
tions can be acquired since we do not rely on the providers
data which might be not up to date, or subject to manipula-
tion by the providers.

Up to now, proposed approaches that addressed the es-
timation of the QoS, they make use of either mathematical
modeling approaches or simulation tools[5][6][7][2]: they
typically provide a global idea about the variation range of
the estimations of certain properties of the composition as
a whole, or their estimations are only applicable for static
WSCs. Yet, providing more detailed estimations, specially
in the case of complex WSCs, is more and more called for.
To fulfill this requirement, our model is oriented towards
acquiring more practical, more detailed estimations of the
QoS of each component apart, and derives the equivalent
estimations for the WSC.

In addition, major part of the work done up to now con-
siders only situations where the WSC do not fail. In doing
so, the obtained estimations are very often regarded as too
optimistic since they do not account for any potential fail-
ures (information, recovery) and their repercussions.

We propose in our model to account for failures and
their repercussions on the effective performances of the
WSCs since this is especially required in the WSs archi-
tecture, in view of the WSs inherent tendency to fail rather
easily (relatively to other computing components). Typi-
cal failures causes include: incompliant WSs characteris-
tics (e.g.,transactional supports, management policies, ac-
cess rights), Internet obvious limitations (e.g., latency, time-
out, security), and so forth. Moreover, since WSs are state-
less, tracking the failures and determining their locations is
almost impossible. To overcome this limitation, we propose
to attach to each of the WSC’s components a State[3].

By introducing the State(S) (e.g., active, executing, done,
failed), the obtained estimations are awaited to contribute in
acquiring more accurate information about the failures loca-
tions and to be used to later to improve the WSCs QoS.

In characterizing the execution time, our model intro-
duces the Optimistic Execution Time and Probable Execu-
tion Time where the former is only limited to the correct
execution situations and where the latter considers all the
possible execution situations (i.e., correct execution, faulty
execution, recoverable execution and none recoverable ex-
ecution) of a fault-tolerant WSCs. Distinguishing between
these two variants allows us to provide more accurate es-
timations where the failure repercussions on the delivered
performances are accounted for.

As for the reliability, we introduce the Reliability Ten-
dency(RT) concept, which builds mainly on the concepts of
component’s State(S), component’s State Reliability Con-
tribution (SRC), component’s Terminal State Set (TSS) and
State Tendency Set(STS). SRC, TSS and STS are obtained
on the base of historical data collected from the past execu-
tions of the WSCs.

The reminder of this paper is as follows. Section 2 intro-
duces our novel model and describes mainly how we char-
acterize the reliability and execution time properties. Sec-
tion 3 validates our model on the base of a case study. Sec-
tion 4 discusses some related work. Lastly, section 5 con-
cludes our paper and gives a few tentative future directions.

2. Web services compositions QoS modeling
and analysis

2.1. Composition specification model
We depict a WSC as an orchestration of n components

Ci, with i in [1..n]. The different components can be assem-
bled according to three basic aggregation patterns – namely
the sequence, the parallel split and the exclusive choice. Of
course to express the underpinning logic of any real process,
these three patterns are far from being enough, we will in-
troduce advanced patterns in our future work.

2.2. Composition execution model
We consider a dynamic execution model of WSCs

where every component Ci, from a WSC (noted
Compositionc) can be mapped at runtime to any avail-
able Web service (noted wsip), where wsip ∈ S(Ci) and
p ∈ [1..card(S(Ci))] with:

• S(Ci) is the set of all the available WSs that provide
functionalities satisfying what Ci requires;

• card(S(Ci)) = |Si| is the cardinality of S(Ci). It is the
number of WSs that might be mapped to Ci on its ex-
ecution. Those WSs are hosted by the providers;

• Any Ci can be mapped at runtime to more than one
WS, at most the cardinality of S(Ci). We assume that
Ci was invoked for execution by q WSs from S(Ci),
(q ≤ |Si|). Among those invocations, we assume that
(q − 1) executions were finished with failures. Indeed,
Ci was retried q times and the qth execution dele-
gated to the WS wsiq was successful;

• We define wsiq , with q a particular value of p, the WS
which was mapped to Ci and terminated successfully
its execution. Note the following particular cases:

– (q = 0 and |Si| 6= 0) if Ci was not mapped to any
WS (i.e., if the execution of any previous compo-
nent fails, then Ci might not be attempted at all);

– (q = |Si| = 0) if there is no WS that can be
mapped to component Ci;

– If the qth invocation of Ci, delegated to wsiq ,
was successful, then the (q − 1)th previous ex-
ecutions of Ci with other WSs (wsik, with k in
[0..(q − 1)]) were finished with failures.

It is worth noting here that the way the WSCs are exe-
cuted (i.e., how the WSs are chosen, how they are mapped to
components, how the execution goes ahead, how the mes-
sages are exchanged e.g., via a central entity, in a peer to
peer) and the likes issues are beyond the scope of this pa-
per. We assume that we are dealing with WSCs for which,
proper reliability enhancement mechanisms were defined.
In fact, many are the approaches which dealt with this is-
sue, for generality sake, we are not following any specific
mode of execution or specification.

2.3. Web services discovery and selection model

We are dealing with dynamically-executed WSCs:
the mapped WSs to the components are chosen at run-
time. Many dynamic WSCs approaches were proposed
(e.g., CMI[8], the eFlow Platform[9] and Self-Serv[1]
framework). In what follows, we assume that the ap-
plied approach to discover the WSs does not matter. For
each component Ci, the discovered WSs are ranked in a Si.
The selection is done in the order of ranking.

2.4. Composition failure model

Fault-tolerance is the ability of a system to behave in a
well-defined manner once faults occur. When considering
a fault tolerant system, a first prerequisite is to specify the
fault class that should be tolerated. Traditionally, with re-
spect to the behavior of a failed system, this was done by
naming one of the standard fault models. Well-known ex-
amples are the fail-stop (the system is one that, once failed,
does not output any data), Byzantine (the system does not
stop once it fails, and instead returns wrong information),
or fail-fast (the system is one that achieves fail-stop behav-
ior very soon after failing, it behaves in a Byzantine way for
only a a short amount of time)[10][11][12].

Since the failure model is application specific, the WSCs
obey originally to the Byzantine model, however, because
of the WSs architecture complexity, we assume that any
WSC, once invoked, it might be subject to failures which
could be environment-dependent failures (at the underlying
platform e.g., crashes, timeouts) or application-specific fail-
ures (e.g., erroneous input, exceptions).

We limit our study only to transient failures where the
system can recover from automatically, either through per-
forming a forward recovery or a backward recovery and this
without requiring any external entity (human) intervention.

As for the backward recovery mechanisms, we assume
that the rolling back the terminated components and the
aborting the executing components apply. For the forward
recovery, in our proposal, we assume that the component
Ci is retried/reattempted by an alternative WS chosen from
its S(Ci). Finally, we assume that any execution is subject
to only one failure at a time. Regarding the failure detec-
tion, we assume that a certain period of time for each com-
ponent is defined. This period of time, if it is elapsed with-
out receiving any notification about the considered compo-
nent execution progress then, a failure is deduced and a fail-
ure recovery is triggered.

2.5. Execution time property characterization

We propose to estimate the execution time of each com-
ponent apart, and then to derive the equivalent estimations
for the whole composition.

2.5.1. Execution time of a component: [2][5] de-
fined the execution time taken by a single WS invoca-
tion with three constituents: (i) service time S(WS) neces-
sary to perform the WS task, (ii)message delay time M(WS)
taken by the SOAP messages in being sent/received and
(iii) waiting time W(WS) the WS invocation delay. Yet con-
sidering only these constituents in characterizing the
execution time is not enough since this definition consid-
ers only the case of one-to-one WS-component mapping.
Besides, it is rather optimistic since it doesn’t take into ac-
count eventual failures.

DEFINITION.1: We define the Optimistic Execu-
tion Time of a component Ci from a WSC Compositionc

(noted T (Ci)opt) the execution time of the dynamically-
mapped WS at runtime to Ci. This definition considers
only the best case where Ci is mapped to a WS which suc-
ceeds in its execution. Inspired from [2][5], we define
T (Ci)opt by Equation(2.1), with T (Ci, wsiq) is the time to
execute wsiq ranked in position q in S(Ci). T (Ci)opt has
three constituents: Service Time (S(wsiq)), Message De-
lay Time (M(wsiq)), and Waiting Time (W (wsiq)).

T (Ci)opt = S(wsiq) + M(wsiq) + W (wsiq) (2.1)
with: 1 ≤ q ≤ |Si|

DEFINITION.2: We define the Probable Execu-
tion Time(noted T (Ci)prob), as the estimation of the
execution time of Ci (see Equation(2.2)). T (Ci)prob

takes into account the allocated WS failure repercus-
sions: the time to inform about the failure and to recover
from it.

T (Ci)prob = T (Ci)opt + I(Ci) + R(Ci) (2.2)

DEFINITION.3: We define the Failure Information Time
(noted I(Ci)), as the time taken by the different SOAP mes-
sages in being sent/received as notifications of a certain fail-
ure. Since any component Ci might be subject to as many
failures as the number of times it was reattempted, the en-
tity I(Ci)), defined by Equation(2.3), is the sum of all the
elapsed periods of time to notify about each of the allocated
WSs failures. Depending from the mode of executing the
WSCs, theses messages might be exchanged directly be-
tween peer WSs or components, or communicated to a cen-
tral authority responsible for failures handling.

I(Ci) =

q−1∑

k=1

I(Ci, wsik) (2.3)

DEFINITION.4: We define the Failure Recovery
Time(noted R(Ci)) as the required time to recover from a
particular component Ci failure (from the failure of the al-
located Web service to the component Ci).

R(Ci) = For(Ci) ∨ Back(Ci) (2.4)

with: For(Ci) =

q−1∑

k=1

T (Ci, wsik)

Back(Ci) = xor(Roll(Ci), Comp(Ci), Abort(Ci))

As defined in Equation(2.4), R(Ci) can be of two kinds:

• For(Ci): the total time spent in retrying Ci by other
WSs. In other words, in Equation(2.5), Ci succeeds
when it is invoked in the qth execution when it is al-
located to wsiq . Thus the previously allocated (q − 1)
WSs failed and the sum of their respective execution
time is the Forward Recovery Time of Ci(For(Ci));

• Back(Ci): In a backward recovery, the mecha-
nism to apply depends from the composition speci-
fication model, the more widely used techniques are
rolling-back, aborting and compensation. Other meth-
ods which can be similarly introduced. Here, the
entity Back(Ci) is either equal to the Rollback
time(Roll(Ci)), the Compensation time(Comp(Ci)),
or to the Aborting time(Abort(Ci)).

2.5.2. Component initial execution time estimation : It
is most likely that the allocated WS failure makes the execu-
tion time tend to infinity, which is not acceptable. To avoid
that, we define a Waiting Period (noted θ) that will avoid
waiting eternally for an answer, from a particular WS, that
might never come, if the WS fails to respond. After θ is
elapsed and no information was received, the WS is consid-
ered as failed and a recovery needs to be performed. The
question here is how to determine θ, in case the compo-
nent was not yet attempted? Usually, WSs advertise their
processing time or provide methods to enquire about it. This
could be used here as for an initial estimation of θ. Later,
when the component is invoked a number of times, θ can be
estimated on the base of these past invocations(m).

In Equation(2.5)), T (Ci)
1
opt is the Optimistic Execution

Time of Ci when invoked for the 1st time:
θi = max(T (Ci)

1
opt, T (Ci)

2
opt, ..., T (Ci)

m
opt) (2.5)

2.5.3. Execution time dimension of a composition : To
estimate the execution time of a particular WSC, its compo-
nents are traversed. The components can be orchestrated in
different ways to structure the WSC. We propose to use the
Workflow patterns compiled in [13]. These patterns capture
typical control flow dependencies encountered in Workflow
modeling and they arguably apply as well for WSCs, since
the situations they capture are also relevant in this domain.

PATTERN 1. SEQUENCE : A component Cj in a WSC
Compositionc is enabled to start its execution after the suc-
cessful completion of its direct predecessor, a component
Ci, having i, j in [1..n] and i < j. The estimation of the
Probable Execution Time is described in Equation (2.6).

T (Compositionc)prob = T (Ci)prob + T (Cj)prob (2.6)
PATTERN 2. PARALLEL SPLIT: Multiple components

are run in parallel simultaneously or in any order. If they are
synchronized, after their executions termination, they merge
together. Say we have a WSC Compositionc composed of
two components Ci and Cj which are executed in paral-
lel, the estimation of the Probable Execution Time of the
Compositionc is described in Equation (2.7).
T (Compositionc)prob = max(T (Ci)prob, T (Cj)prob) (2.7)

PATTERN 3. EXCLUSIVE CHOICE: Say we have a
composition Compositionc composed of two components
Ci and Cj which are executed exclusively, the estimation of
the Probable Execution Time of Compositionc is equal to
the time taken by the chosen component to execute, that is
either Ci or Cj (See Equation(2.8)).
T (Compositionc)prob = xor(T (Ci)prob, T (Cj)prob) (2.8)

2.6. Reliability property characterization

We define the concept of Reliability Tendency(noted
RT), which upholds the idea that from one state to another,
the reliability contribution varies. RT builds on: the compo-
nent’s State, component’s Terminal State Set (TSS), compo-
nent’s State Tendency Set(STS), and finally State Reliability
Contribution (SRC). These are defined on the base of a his-
tory collected by observing the WSC execution. Many are
the tools to collect such a history (e.g., Jopera[14]).

DEFINITION 5. Each component Ci, after being in-
voked for execution, it has a Terminal State (noted TS) with
which its invocation is terminated. After m invocations, for
each component, a Terminal States Set (noted TSS(Ci)) is
formed. The cardinality of TSS(Ci) depends from the dif-
ferent possible Terminal States of a component. We assume
that it is at least equal to one and at most equal to β. Any
TSS(Ci) verifies the condition of Equation(2.9):

1 ≤ |TSS(Ci)| ≤ β (2.9)

DEFINITION 6. After m invocations of Ci, at least one
Terminal State, among its different possible Terminal States
tends to have the biggest occurrence ratio. We introduce the
notion of State Tendency Set (noted STS(Ci), as the Ter-
minal State(s) that has(have) the biggest occurrence(s) ra-
tio(s) after m invocations of that component. In other words,
STS(Ci) is the set of state(s) that are included within the
Terminal States Set of Ci and which has(have) the biggest
occurrence ratio(s) (noted Occur(State)) after m invoca-
tions of Ci (see Equation(2.10)). STS(Ci) ⊆ TSS(Ci)
and occur(State) is the number of times (after m invoca-
tions) Ci execution was terminated with the TS State.

STS(Ci) = max
State∈TSS

{

m∑

1

State(occur(State))} (2.10)

DEFINITION 7. From one Terminal State to another, the
contribution in the reliability differs. For instance, termi-
nating the execution of a component Ci in the Failed
state would affect negatively the reliability, contrary to the
Committed state which would contribute positively in in-
creasing the reliability. We define this concept as the State
Reliability Contribution(noted SRC) of a particular TS. We
assume that a transition from one Terminal State to another
makes the SRC stronger if is towards reaching a state de-
noting the execution success and it contributes negatively
and makes the SRC weaker if it is toward a state denoting a
faulty execution. The definition of the SRC of each state de-
pends greatly from the considered environment character-
istics (e.g., number of TS, possible states, states transitions
and so forth), we will deal with this issue in our future work.

DEFINITION 8. The notion of Reliability Tendency of a
component Ci (noted RT (Ci)) is derived from the previ-
ous definitions as in Equation(2.11). It defines the reliabil-
ity rate of each component, after m invocations.

RT (Ci) =

∑
TS∈ TSS(Ci)

(occur(TS).SRC(TS))

|TSS(Ci)|
(2.11)

We emphasize that we introduced the appellation of Reli-
ability Tendency, equivalent to Reliability in other work, be-
cause we are convinced that in the WSs context, precise re-
liability measurements are very difficult to acquire, in view
of its dynamism. Estimating the rate to which the reliabil-
ity will tend is more plausible.

DEFINITION 9. The Reliability Tendency of a WSC
Compositionc, comprising n components, is derived from
its components respective RT as follows:

RT (WSCc) =

∑
0≤i≤n (RT (Ci))

n
(2.12)

3. Validation
We describe a case study in which we make use of

JOpera [14][15], to collect the history of a WSC depicting
a quoting process, to show our proposal applicability.

Multiply rate by quote (C3)

Currency exchange rate (C1)

Convert to European currency (C4)

Multiply rate by quote (C3)

1)

Convert to European currency (C4)

Retrieve stock quote (C 2)

Unreachable

Initial

Waiting

Running
Failed

Finished
Aborted

Suspended

Unreachable

Initial

Waiting

Running
Failed

Finished
Aborted

Suspended

(a) Activity diagram (b) State transition diagram

Figure 1. quoting process: UML diagrams

3.1. Case study

We consider a process that retrieves quotes in the desired
currency for a user-provided stock symbol[16].(see activity
diagram of Figure.1).To execute the WSC, we use JOpera: a
rapid composition tool offering a visual language and an ex-
ecution platform for building distributed applications out of
reusable services. Our choice of JOpera was mainly guided
by its practicability. The execution of the WSs follows the
state diagram of (Figure.1). The process is invoked eleven
times (m = 11). The invocations results in terms of execu-
tion time and Terminal States respectively for each compo-
nent and for the WSC are in (Figure.2) and (Figure.3). The
reasons behind the failures that have occurred were:

• The Internet connection failed during the SOAP mes-
sage round trip (e.g., instance]9);

• The WS timed out because of a network connection
failure (e.g., instance]4);

• The Web service returned a failure message because of
data inconsistency (e.g., instance]8).

3.1.1. Execution time estimation and analysis : We con-
sider the case where the execution control is delegated to a
centralized authority which is responsible for all the com-
ponents execution and failure recovery and for the WSs dis-
covery and mapping to the components. In this case study,
for each component, only one WS has been made available
(|Si| = 1 ∀ i ∈ [1..4]).

SCENARIO 1.: We consider that the mapped WSs to the
components (C1 7→ ws11, C2 7→ ws21, C3 7→ ws31 and
C4 7→ ws41) terminated successfully in the Finished
TS (e.g., instance]0 in (Figure.2)). The Probable Execu-
tion Time of composition1 is described in Equation(3.1).

T (Composition
1
)prob=max(T (C1)prob,T (C2)prob)+T (C3)prob (3.1)

+T (C4)prob

=T (C2)opt+T (C3)opt+T (C4)opt

=T (C2,ws21)+T (C3,ws31)+T (C4,ws41)=4,737sec.

With: T (C1)opt=T (C1,ws11) T (C2)opt=T (C2,ws21)

T (C3)opt=T (C3,ws31) T (C4)opt=T (C4,ws41)

I(C1)+R(C1)=I(C2)+R(C2)=I(C3)+R(C3)=I(C4)+R(C4)=0

Execution time of the different web services and the composition after every invocation (11 instances)

0 1 2 3 4 5 6 7 8 9 10

getQuote (WS
11

) 1.102 0.981 2.544 1.282 1.031 0.160 0.902 1.022 1.001 5.859 31.425

getRate(WS
21

) 1.202 1.151 2.564 0.991 1.182 0.160 1.172 1.181 9.704 5.879 31.395

Multiply(WS
31

) 1.222 2.343 2.104 0.010 20.900 0.000 0.010 0.010 0.000 0.000 0.000
FromEuro(WS

41
) 2.313 1.161 6.309 0.000 0.000 0.000 2.592 1.062 0.000 0.000 0.000

composition 4.737 4.655 10.977 1.292 22.082 0.160 3.774 2.253 9.704 5.879 31.425

Instance No.

W
eb Service

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10
instance number

ex
ec

ut
io

n
tim

e
in

 s
ec

.

getQuote (WS11) getRate(WS21)
Multiply(WS31) FromEuro(WS41)
composition

Figure 2. Quoting process: execution results

SCENARIO 2.: In this scenario, we take the case of
one of the instances in which one or more components fail.
The execution of the component retrial is not possible since
there is no other available wss to reattempt it. As a result, a
backward recovery needs to be launched. In Equation(3.2),
we follow the case of instance]4 in which the Web service
ws31, allocated to C3, failed. Equation(3.1) becomes:

T (Composition
1
)prob=max(T (C1)prob+T (C2)prob)+T (C3)prob (3.2)

+T (C4)prob

T (C1)prob=T (C1)opt+R(C1) T (C2)prob=T (C2)opt+R(C2)

T (C3)prob=I(C3) T (C4)prob=0 R(C1)=Back(C1)=Roll(C1)

R(C2)=Back(C2)=Roll(C2) I(C3)=T (C3,ws31)

This case study shows that estimating the Execution Time at
the component level, and considering all the possible exe-
cution situations (going from faulty executions to success-
ful executions)can help the designers to acquire more eas-
ily detailed data, without having to go through any complex
modeling formalisms. The obtained data is more practical
since no simulation systems are needed to analyze the re-
sults. On the base of such data, the system designers can
locate more smoothly error-prone component(s), their fail-
ures reasons might be more easily investigated and eventu-
ally, the composition overall structure can be altered, if re-
quired, to improve the performances.

3.1.2. Reliability estimation and analysis : From the re-
sults of the invocations of the quoting process (Figure.2),
we determine the TSS, STS, and RT of the different com-
ponents of the composition (Figure.3). Typical interpreta-
tions of these results are:

• Both C3 and C4 tend to not succeed in their executions
in 9.1% of the cases because of their own failures (i.e.,
they tend to terminate in 9.1% of the cases their ex-
ecutions in the Failed state). For example, instance
]4 and instance]3 failed respectively because of fail-
ures occurred at C3 (ws31 failed to send back its re-
sponse, a timeout occurred) and at C4 (a network fail-
ure was behind not allowing ws41 to receive its input);

Instance 0 1 2 3 4 5 6 7 8 9
Finished Finished Finished FinishedFinished Failed Finished Finished Finished Failed
Finished Finished Finished FinishedFinished Failed Finished Finished Failed Failed
Finished Finished Finished FinishedFailed UnreachableFinished Finished UnreachableUnreachable
Finished Finished Finished Failed UnreachableUnreachableFinished Finished UnreachableUnreachable
Finished Finished Finished Failed Failed Failed Finished Finished Failed Failed

Terminal
State (TS)

10

Failed

(C
1
,WS

11
)Failed

(C
2
,WS

21
)

Unreachable (C
3
,WS

31
)

Unreachable (C
4
,WS

41
)

Failed Composition1

Terminal States Set (TSS) State Tendency Set (STS) Reliability Tendency (RT)

(C
1
,WS

11
) {Finished(72.7%), Failed(27.3%), Unreachable(0%)} {Finished(72.7%)} (72.7%*1+27.3%*(-1)+0%*0.5)/3=15.1%

(C
2
,WS

21
) {Finished(63.6%), Failed(36.4%), Unreachable(0%)} {Finished(63.6%)} 9.1%

(C
3
,WS

31
) {Finished(54.5%), Failed(9.1%), Unreachable(36.4%)} {Finished(54.5%)} 21.2%

(C
4
,WS

41
) {Finished(45.5%), Failed(9.1%), Unreachable(45.5%)} {Finished(45.5%), Unreachable(45.5%)} 19.7%

Composition
1

 Reliability tendency(RT) 16.3%

Figure 3. Quoting process: TSS, STS, and RT

• C3 and C4 tend to not start their executions and to
terminate in the Unreachable state respectively in
36.4% and 45.5% of the total invocations. A compo-
nent state is set to the Unreachable state when the
condition associated with it evaluates to false. In such a
case, its execution is skipped[15]. In the case of C3 and
C4, their conditions were not fired because their prede-
cessors failed (e.g., in instance]8, C2 failed). C1 and
C2 tendency to finish in the Failed is rather high: up
to 27.3% for C1 and 36.4% for C2. By their failures,
they cause the overall composition failure. The reasons
that lay behind the frequent failures of C1 and C2 need
to be investigated. Other WSs bearing the same func-
tionalities as C1 and C2 need to be searched. Lastly,
revising the WSC structure (i.e., component order, in-
vocation conditions) is to be envisaged;

• The estimations of the Reliability Tendency(RT) ac-
cording to the Equation(2.11) is in (Figure.3). In de-
termining these estimations, defining the different
State Reliability Contributions(SRC) of each Termi-
nal State was required. The estimation of the different
SRC is done on the base of collected history. In this
case study, as initial values, we affected to the Termi-
nal States Finished, Failed and Unreachable
the SRC +1.0, −1.0 and +0.5 , respectively. Our mo-
tivation behind allocating such values is that, we
advocate that the Finished state is the best con-
tributing in the reliability, the the Failed state
is the worst contributing in the reliability, and the
unreachable state is in between: the compo-
nent execution was about to start but it did not because
its activation condition was not fired.

4. Related work
4.1. Conventional composite systems context

In addressing the QoS of conventional compos-
ite systems, a large variety of techniques has been
proposed[17][12]. Those techniques are supported by un-
derlying modeling formalisms (e.g., block diagrams,
Markov chains, Petri-nets, logics, etc.).

Similarly, in the context of software engineering, many
mathematical techniques have been developed. The mostly-
related models to our paper are the structural models of
reliability[18] and the Markov reward models[19], which
form the basis of all performability models. In the former,
a state diagram which depicts the system behavior is used.
Based on Markov chain properties, the transition between
states is assumed as a Markov process. In the later, the sys-
tem is assumed to be modeled as a Markov process with fi-
nite state space and a reward rate (performance measure) is
associated with each state. The main shortcoming here is
that building good models requires lots of expertise and ef-
forts. And very often, the designers are not keen of building
such models because of their inherent complexity. More-
over, the obtained models are not straightforwardly inter-
pretable, further simulations need to be performed.

4.2. Web services context

The work found in the literature that relate to the estima-
tion and analysis of QoS properties of WSCs, is very lim-
ited. One category is oriented towards rating the QoS by
the WSs users. In[20], an approach for selecting services
based on their semantics as well as their quality as judged
by users is proposed. To this end, a query language based on
DAML that accommodated several essential query and ma-
nipulation templates is developed. The users/providers es-
timations of the QoS might be incorrect and/or biased by
the users impartiality. In our work, we do not rely on the
users/providers QoS rating, instead, designers observe the
WSCs execution and collect the execution results in a his-
tory to use later as a base to estimate the QoS properties.

In[21], the authors discussed a model with Service
Level Agreement(SLA) which is used as a bridge be-
tween providers and consumers. However, when consider-
ing WSCs, and in particular, dynamic WSCs, dealing with
SLAs gets very complex. Hierarchical QoS Markup Lan-
guage (HQML), Web Ontology Language (OWL-S), Web
service Level Agreement language (WSLA), are exam-
ples of specifications that have addressed the need for a
QoS model. The common point between these specifi-
cations is that they have described the QoS of WSs. For
instance, DAML-S, has included constructs which spec-
ify several QoS parameters, namely, the quality rating
and the degree of quality. However, these specifica-
tions have not supplied any precise characterization of the
different parameters and it is only for WSs.

[6] has presented a model to evaluate the QoS of both el-
ementary and composite services. In [6], the potential fail-
ure repercussions on the global execution time has not been
considered. The reliability was mapped directly to each of
theWS individual reliability. It was defined as the probabil-
ity that a request to a particular WS is correctly responded
within a maximum expected time frame.

This method of characterizing the reliability is not exten-
sible to dynamically assembled WSCs.

4.3. Workflow Management System(WFMS)context

In view of the similarities that exist with the area of
WFMS(i.e., both deal with aggregating components follow-
ing a process underpinning logic), we consider some re-
lated work in this area. The Crossflow project[22][23] and
the METEOR project[5][2][24][25][26] have made major
contributions on QoS. Specifically, the METEOR project
has investigated four QoS dimensions, namely the time, the
cost, the reliability, and the fidelity. However, it has not con-
sidered in any way dynamic WSCs. It has focused on ana-
lyzing, predicting, and monitoring the QoS of workflows.
Their proposed model is actually derived from a more gen-
eral work[7], in which to describe tasks reliability in work-
flow context, the discrete-time stable reliability model pro-
posed in[27] is followed(see Equation(4.1)). In this WFMS,
task structure[28] has a prefixed number of states and all of
the states contribute equally in the reliability. This way of
modeling the tasks is limitative. It is worth if the model is
easily extensible with other state. Both of the above mod-
els are for static WSCs.
R(t) = 1−(system failure rate+process failure rate) (4.1)

5. Conclusions and future directions
We presented a novel model for characterizing, estimat-

ing, and analyzing the efficiency of dynamically-executed
fault-tolerant Web services compositions.

Our work main contributions resided in, first, proposing
an innovative approach for estimating the QoS in terms of
execution time and reliability, in the context of Web ser-
vices compositions. While most of the current approaches
dealing with QoS estimations in the WSs context rely on
the QoS information advertised by the WSs providers, our
model estimates QoS properties on the base of the WSCs
executions observations, where the observation results are
collected in a history. In doing so, more accurate estima-
tions can be acquired since we do not rely on the providers
data which might be not up to date, or which might be sub-
ject to manipulation.

Second, our work conferred a paramount importance to
the failure repercussions on the WSCs efficiency. In fact,
not only correct execution instances were examined to esti-
mate the efficiency and later analyze it, but our model was
oriented towards considering the system in all of its possi-
ble states: correct, faulty, recoverable executions. In doing
so, we intended to make our model capable to reflect the
real state of any system in general, and to the typical case
of WSCs, with their inherent tendency to fail rather easily
compared with others.

Third, since WSs are stateless, tracking failures and de-
termining their location is very difficult.

To overcome this problem, we attached to each compo-
nent a state. In doing so, the more error-prone components
can be more easily found. The reasons that lay behind the
failures can be investigated and approximated and such in-
formation can be used to improve the composition quality in
the future. Finally, who says a model applicable to the Web
services context says also it is applicable to any business
process modeling application or classic distributed compos-
ite systems (e.g., workflow), in view of the similarities . In-
deed a high level of applicability to a wide range of systems
is foreseen for our model.

Our ongoing work comprises mainly conducting experi-
ments using our implemented simulation system of our pre-
vious work WS-SAGAS, a transaction model for WSCs
reliable specification, and THROWS, an architecture for
highly available execution of WSCs [3] [29][30][4] to eval-
uate our proposed approach. We intend to introduce a new
module dedicated to collecting in a history, the past execu-
tions. Finally, we intend to enrich our model with other ef-
ficiency estimation dimensions.

Acknowledgment

Part of this research was supported by CREST of JST
(Japan Science and Technology Agency), a Grant-in-Aid for
Scientific Research on Priority Areas from MEXT of the
Japanese Government (#16016232), and the 21st Century
COE Program ”Framework for Systematization and Appli-
cation of Large-scale Knowledge Resources.”

References
[1] Q.Sheng B.Benatallah M.Dumas and E.Y.Mak. Self-serv: A

platform for rapid composition of web services in a peer-to-
peer environment. In VLDB, pages 1051–1054, 2002.

[2] J.Cardoso and A.Sheth. Semantic e-workflow composition.
Journal of Intelligent Information Systems, 2003.

[3] N. Benlakhal T. Kobayashi and H. Yokota. Throws: An
architecture for highly available distributed execution of
web services compositions. In RIDE WS-ECEG’2004, the
14th Int.Workshop on Research Issues on Data Eng.: Web
Services for E-Commerce and E-Government Applications,
pages pp.103–110, Boston, USA, March 2004. IEEE.

[4] N. Benlakhal T. Kobayashi and H. Yokota. Distributed ar-
chitecture for reliable execution of web services. Technical
report, IEICE, DBWS2003 2B, 2003.

[5] S.Chadrasekaran J. A. Miller G. Silver I. B. Arpinar and
A. Sheth. Composition, performance analysis and simula-
tion of web services. Electronic Markets: The International
Journal of Electronic Commerce and Business Media, 2003.

[6] L.Zeng B.Benatallah M.Dumas J.Kalagnanam and
Q.Z.Sheng. Quality driven web services composition.
In the 12th inter. conf. on World Wide Web, pages 411 – 421,
Budapest, Hungary, 2003. ACM Press.

[7] J.Cardoso A.Sheth J.Miller J.Arnold and K.Kochut. Quality
of service for workflows and web service processes. Journal
of Web Semantics, 2004.

[8] H.Schuster, D.Baker, A.Cichocki, D.Georgakopoulos, and
M.Rusinkiewicz. The collaboration management infrastruc-
ture. In ICDE, pages 677–678, 2000.

[9] F.Casati and M.Shan. Event-based interaction management
for composite e-services in eflow. Information Systems Fron-
tiers, 4(1):19–31, 2002.

[10] L.Lamport R.Shostak and M.Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3), 1982.

[11] F.C.Gartner. Fundamentals of fault-tolerant distributed com-
puting in asynchronous environments. ACM Comput. Surv.,
31(1):1–26, 1999.

[12] J-C.Laprie. Dependable computing and faut tolerance: con-
cepts and terminology. In Proc. of the 15

th int. Sym. on
Fault-tolerant Computing (FTCS-15), pages 2–11, 1985.

[13] P.Wohed, Wil M.P. v.Aalst, M.Dumas, and A.H.M.Hofstede.
Pattern based analysis of bpel4ws. Technical report, Queens-
land Uni.of Tech., Brisbane, 2002.

[14] C.Pautasso T.Heinis and G.Alonso. Autonomic execution of
service compositions. In 3

rd IEEE Int. Conf. on Web Ser-
vices (ICWS’05), Orlando, USA, July 2005.

[15] C.Pautasso. A Flexible System for Visual Service Composi-
tion. PhD thesis, ETH, July 2004.

[16] xmethods. www.xmethods.net, 2004.
[17] H.Kobayashi. Modeling and Analysis: An Introduction to

System Performance Evaluation Methodology. Addison-
wesley edition, 1978.

[18] R.C.Cheung. A user-oriented software reliability model.
IEEE Transactions On Software Eng., 6(2):118, March 1980.

[19] M.A.Qureshi and W.H.Sanders. Reward model solution
methods with impulse and rate rewards:an algorihm and nu-
merical results. Performance evaluation, 1994.

[20] A. Soydan Bilgin and Munindar P. Singh. A daml-based
repository for qos-aware semantic web service selection. In
ICWS, pages 368–375, 2004.

[21] Li.Jin, V.Machirajuand, and A.Sahai. Analysis on service
level agreement of web services. Tech. Report HPL-2002-
180, Software Technology Laboratories, HP Lab., June 2002.

[22] P.Grefen K.Aberer H.Ludwig and Y.Hoffner. Crossflow:
Cross-organizational workflow management for service out-
sourcing in dynamic virtual enterprises. IEEE Data
Eng.Bulletin, 24(1):52–57, 2001.

[23] J.Klingemann J.Wasch and K.Aberer. Deriving service mod-
els in crossorganizational workflows. In RIDE-Information
Tech.for Virtual Enterprises, Australia, March 1999.

[24] J.Cardoso J.Miller A.Sheth and J.Arnold. Modeling quality
of service for workflows and web service processes. techni-
cal report, 2002.

[25] A.Sheth J.Cardoso J.Miller and K.kochut. Service-oriented
middleware. In 6

t
h World Multiconf. on Systemics, Cyber-

netics and Informatics, Orlando, FL, 2002.
[26] J.Cardoso. Quality of Service and Semantic Composition of

Workflows. Ph.d. dissertation, Dep. of Computer Science,
University of Georgia, Athens, GA., 2002.

[27] E.C.Nelson. A statistical basis for software reliability assess-
ment. Technical report, TRW Systems Report, March 1973.

[28] N.Krishnakumar and A.Sheth. Managing heterogeneous
multi-system tasks to support enterprise-wide operations.
Distributed and Parallel Databases, 3(2), 1995.

[29] N. Benlakhal T. Kobayashi and H. Yokota. A simulation sys-
tem of throws architecture for ws-sagas. Technical Report
7-B-4, 14th IEICE Data Eng. Workshop, March 2004.

[30] N. Benlakhal T. Kobayashi and H. Yokota. Ws-sagas: trans-
action model for reliable web-services-composition specifi-
cation and execution. DBSJ letters, 2(2):17–20, Oct. 2003.

[31] A.Ankolekar. Daml-s: Web service description for the se-
mantic web, 2002.

