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Cepstral Analysis Technique for Automatic
Speaker Verification

SADAOKI FURUI, MEMBER, IEEE

Abstracr—This paper describes new techniques for automatic speaker
verification using telephone speech. The operation of the system is
based on a set of functions of time obtained from acoustic analysis of a
fixed, sentence-long utterance, Cepstrum coefficients are extracted by
means of LPC analysis successively throughout an utterance to form
time functions, and frequency response distortions introduced by trans-
mission systems are removed. The time functions arc expanded by
orthogona! polynomial representations and, after a feature selection
procedure, brought into time registration with stored reference func-
tions to calculate the overall distance. This is accomplished by a new
time warping method using a dynamic programming technique. A de-
cision is made to accept or reject an identity claim, based on the overall
distance. Reference functions and decision thresholds are updated for
each customer.

Several sets of experimental utterances were used for the evaluation
of the system. which include male and female utterances recorded over
a conventional telephone connection. Male utterances processed by
ADPCM and LPC coding systems were used together with unprocessed
utterances. Results of the experiment indicate that verification error
rate of one percent or less can be obtained even if the reference and test
utterances are subjected to different transmission conditions.

Manuscript received May 5, 1980; revised September 25, 1980.

The author was with Bell Laboratories, Murray Hill, NJ 07974. He
is now with the Electrical Communication Laboratories, Nippon Tele-
graph and Telephone Public Corporation, Tokyo 180, Japan.

I. INTRODUCTION

PEAKER verification is a process to accept or reject the
Sidentity claim of a speaker by comparing a set of measure-
ments of the speaker’s utterances with a reference set of mea-
surements of the utterance of the person whose identity is
claimed.

Research on an automatic system for speaker verification at
Bell Laboratories has been reported in previous papers [1]-
[4]. The system is based on an acoustic analysis of a fixed,
sentence-long utterance resulting in a function of time or con-
tour for each feature analyzed. Features selected for analysis
in previous evaluations have included pitch, intensity. the first
three formants, and selected prediction coefficients. The sys-
tem which uses pitch and intensity contours has been evaluated
using telephone speech over a period of five months with a test
population of over 100 male and female speakers. The evalu-
ation indicated an error rate of approximately ten percent for
new customers and approximately five percent for adapted
customers [4]. It has also been shown that the performance
of this system is relatively insensitive 1o transmission systems
in which the speech is encoded using adaptive differential
pulsc code modulation (ADPCM) coding or linear predictive
coding (LPC) vocoding [5].
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FURUI: AUTOMATIC SPEAKER VERIFICATION

This paper describes new techniques for an automatic
speaker verification system for telephone-quality speech. The
differences between the present implementation and previous
implementations of the system lie in the features selected for
analysis and the method of overall distance computation. In
addition, new and enlarged samples of speech, including several
kinds of transmission systems have been used for evaluation.

II. SYSTEM OPERATION

A block diagram indicating the principal operations of the
system is shown in Fig. 1. There are two inputs to the system,
the identity claim and the sample utterance. The identity
claim which may be provided by a keyed-in identification
number causes reference data corresponding to the claim to
be retrieved. The second input is activated by a request to
speak the sample utterance. The recording interval is scanned
to find the endpoints of the utterance. The utterance is then
analyzed. Linear predictor coefficients are extracted suc-
cessively and these coefficients are transformed into cepstrum
coefficients. The cepstrum coefficients are averaged over the
duration of the entire utterance and the average values are
subtracted from the cepstrum coefficients of every frame to
compensate for frequency-response distortions introduced by
the transmission system.

The time functions of the cepstrum coefficients are ex-
panded by an orthogonal polynomial representation over short
time segments. Then the utterance is represented by the time
functions of coefficients of the orthogonal polynomial repre-
sentation. A part of the set of these coefficients is selected for
speaker verification, based on the statistical analysis of the
effectiveness of each coefficient.

A crucial property of the system is automatic time registra-
tion of the time functions of the sample utterance to the time
functions retrieved as the reference template of the claimed
identity. An overall distance between the sample utterance
and the reference template is obtained as the result of time
registration using a dynamic programming technique. The dis-
tance of each element is weighted by intraspeaker variability
and summed to produce the overall distance. Finally, the
overall distance is compared with a threshold distance value to
determine whether the identity claim should be accepted or
rejected.

Details concerning the analysis procedures, reference con-
struction, time registration, and distance calculation will be
presented in the following sections.

A. Normalized Cepstrum Extraction

The speech wave is bandlimited from 100 Hz to 3.0 kHz and
sampled at a 6.67 kHz rate, or bandlimited from 100 Hz to
2.6 kHz and sampled at 6 kHz. The digitized speech is then
scanned forward from the beginning of the recording interval
and backward from the end to determine the beginning and
end of the actual sample utterance. The endpoint detection is
accomplished by means of an energy calculation. A high
emphasis filter (1 - 095Z7") s applied to the delimited
speech, and a 30 ms Hamming window is applied to the em-
phasized speech every 10 ms. First to tenth-order linear pre-
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Fig. 1. Block diagram indicating the principal operations of the system.
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Fig. 2. Block diagram for cepstrum extraction.

dictor coefficients are extracted from each frame by the auto-
correlation method. The linear predictor coefficients are
transformed into cepstrum coefficients, using the following
recursive relationships [9]:

¢ =a,

n-i
Ch = Z (l - k/")akcn-k ta,,
k=1

1<n<p

(1)

where ¢; and a; are the ith-order cepstrum coefficient and
linear predictor coefficient, respectively. Fig. 2 shows the
block diagram of these processes.
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Atal [9]) examined several different parametric representa-
tions of speech derived from the linear prediction model for
their ecffectiveness for automatic recognition of speakers.
Among all the parameters investigated, the cepstrum was
found to be the most effective. It was also pointed out that
cepstrum coefficients have the additional advantage that one
can derive from them a set of parameters which are invariant
to any fixed frequency-response distortion introduced by the
recording apparatus or the transmission system. The new pa-
rameters are obtained simply by subtracting from the cepstrum
coefficients a set of values representing their time averages
over the duration of the entire utterance. This process can
normalize the gross spectral distribution of the utterance, and
it is similar to the inverse filtering process which has been used
in a spoken word recognition system at Bell Laboratories [6].
The normalization technique introduced by Atal is used in the
speaker verification system studied in this paper.

In previous studies by the author (7], [8] it was shown that
this normalization process is also effective in reducing long-
term intraspeaker spectral variability for maintaining high
speaker verification and identification accuracy over a long
period. il

B. Polynomial Coefficients

Time functions of the normalized cepstrum coefficients are
expanded by an orthogonal polynomial representation over
90 ms intervals every 10 ms. The 90 ms interval length seemed
adequate for preserving transitional information between pho-
nemes. The first three orthogonal polynomials are used. They
are [10]

Poi=1
P,,-=]'-5

55
Pyi=j*- 10j+ 3 @)

Thus, if the control function samples for an utterance within
the segment being measured are x;(j =1,2.---,9), then the
first three coefficients of the orthogonal polynomial repre-
sentation are

“(zo)f

(i xipli)/i Pij

i=1 j=1

F(i xi”zi)/i P3j-

j=1 i=1

b

3)

These coefficients represent mean value, slope. and curvature
of the time function of each cepstrum coefficient in each seg-
ment, respectively.

As the original time functions of cepstrum coefficients are
considered to be more efficient than the Oth-order polynomial
coefficients for speaker verification, the original time func-
tions of cepstrum coefficients are used to replace the Oth-order
polynomial coefficients in this implementation. When the Oth-
order polynomial coefficients are not used, the block diagram
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Fig. 3. Block diagram indicating the principal operations of the system
(modification of Fig. 1).

of feature extraction is modified as shown in Fig. 3, since
cepstrum normalization does not affect the first- and second-
order polynomial coefficients.

Accordingly. the utterance is represented by time functions
of the cepstrum coefficients x,(7), and the first- and second-
order polynomial coefficients, b,(i) and c,(i), where  is the
frame number and i is the index of the cepstrum coefficient
(1 <i< p). Since p is set to ten in this system, the result is a
representation by a time function of a 30-dimensional vector.
From these 30 elements, a set of elements, which are most ef-
fective in separating the overall distance distribution of cus-
tomer and impostor sample utterances are selected for speaker
verification. The selection is made based on the inter-to-
intraspeaker variability ratio for each element:

h; = dg;/d ;i
dgi = iEk (dij),  dwi= 115 (dijj)
G# 0
dijy = E dijkim 4)
Lm

(= m, if j=k)
where £ means averaging over the index /, and djjip, is the

i

distance between the time function of ith element derived
from Ith utterance by speaker j and mth utterance by speaker
k after time registration.

C. Time Registration

A sample utterance is brought into time registration with the
reference template to calculate the distance between them.
This is accomplished by a new time warping method using
dynamic programming technique. As there is often some un-
certainty in the location of both the initial and final frames
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due to breath noise, etc., the unconstrained endpoint tech-
nique {11] is applied.

We denote two contours as R(n), 1 <n <N, and T(m),
1 <m< M. We denote R(n) and T(m) as guide contour and
slave contour, respectively. The purpose of the time warping
algorithm is to provide a mapping between the time indexes n
and m such that a time registration between the two utterances
is obtained. We denote the mapping w, between n and m as

(5)

The function w must satisfy a set of boundary conditions at
the endpoints of the utterance and some restrictions on the
form it assumes. In our case, the following conditions are

m=w(n).

applied:
wn+1)-w(n)=01.2 (wn)#w(n-1)) (6a)
=12 (w(n) =w(n - 1)) (6b)
1<Sw()<8+1 (6¢)
M-s<wN)<M (6d)
maxw(n)=M, N-8<n<N (6e)
Aﬁln-mo<w(n)<%n+m0. (61)

Equations (6a) and (6b) require that w(n) be monotonically
increasing, with a maximum slope of two, and a minimum
slope of 1/2. The minimum slope constraint is a consequence
of the prohibition against two consecutive steps with slope 0.
In (6¢), (6d), and (6¢), & represents the maximum anticipated
range of mismatch (in frames) between boundary points of the
two utterances. In our case, a value of & of 15 (frames) was
used, representing a 150 ms region in which the initial and final
frames could be mapped.

The warping function can reach the final boundary of the
slave contour prior to the last frame, i.e., it is possible that

w(n)=M n<N (7)

in which case it is not physically meaningful 1o continue the
path.

Equation (6f) restricts the warping function within some
fixed region along the diagonal line which connects (1, 1) and
(V. M) points on the (n - m) plane. [n our case mq was set to
20 (frames). From these conditions the warping function is
constrained to follow a path inside the shaded region of Fig. 4.
The vertices of the labeled points A and B are obtained as the
intersections of the lines.

} point A

} point B

As can be seen in Fig. 4, the warping function can start from
any frame of the slave contour between the first and 6 + Ith
frame, but it must start from the first frame of the guide con-

for

m-M=3(n-N+8§)
m-6-1=2(n-1)

=l
m=szn

(8)
m-M+8=2(n-N)

SLAVE CONTOUR

GUIDE CONTOUR

Fig. 4. Allowable region of the dynamic programming warping function
path.

tour. If we allow the warping function to also start from any
frame of the guide contour, the computation time becomes ex-
cessive. If the intraspeaker variation of utterance lengths is
not large, we have found that the likelihood is great that the
optimum warping function starts from the first frame of the
shorter of either the reference template or test utterance. The
basis for this result is described in Section VI-F. Based on this
assumption we adopted the procedure of using as the guide
contour the shorter of either the reference template or test
utterance. This means that the longer one is mapped to the
slave contour axis which is the ordinate of the warping plane
and the shorter one is mapped to the guide contour axis which
is the abscissa of the warping plane in Fig. 4.

A complete specification of the warping function results
from a point-by-point measure of similarity between the guide
contour R (1) and the slave contour T(m).

D. Distance Measure

A similarity measure or distance function D must be defined
for every pair of points (n,m) within the shaded region of
Fig. 4. Given the distance function D, the optimum dynamic
path w is chosen to minimize the accumulated distance Dp
along the path, ie., )

Dy = min % DR (n), T(w(n))).

9

{wim} n=1 )
When the warping function reaches the final boundary of the
slave contour prior to the last frame, the accumulated distance
D is scaled by the factor (Nf/Ng) where Ny is the frame at
which (7) is satisfied, so as 10 equalize the number of distances
which enter into the total distance Dy. The optimum path w
can be determined by the method of dynamic programming
easily.

Let us denote the feature vector of the nth frame of the
guide contour as R(n) =(ry(n),ra(n), - - . ri(n), -+ .rx(n))
and the mth frame of the slave contour as T(m)=(1,(m),
ta(m), -« t;(m), -+ -, tx (m)), where K is the number of the
elements of the feature vector. In this paper, two kinds of
distance measures are used and evaluated.

K
Dy(R(n), T(m))= 3" gi(ri(n)- 1;(m))?

i=1

(10a)
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2
Dy(R(n). r(mn=( S gl t,~(m)l) (10b)

i=1

where g; is the weighting function, which is the reciprocal of
the mean value of intraspeaker variability for the ith element,
defined as follows:

& = l/§w1
- _ N
dWi=l,‘,7(diij)= € > (tijx (1) - 1w ()))? (an
ket "

where t;;,(n) is the nth frame of the kth utterance by
speaker J.

E. Decision Threshold

The overall distance accumulated over the optimum warping
function is compared with a threshold to determine whether
to accept or reject an identity claim. In many kinds of speaker
verification experiments, the threshold is set a posreriori so
that the two kinds of error rate (the rate of rejecting utterances
which should be accepted and the rate of accepting utterances
which should be rejected) are equal. But these experiments
are unrealistic, and procedures for setting thresholds in ad-
vance in practical situations are not well established.

In this paper, two methods for setting an a priori threshold
are evaluated. In the first method, the threshold is set to an
experimentally decided fixed value, and the same threshold is
used for all customers. In the second method, the optimum
threshold is estimated based on the distribution of overall dis-
tances between each customer’s reference template and a set
of utterances of other speakers. In the latter case, the thresh-
old is updated at the same time as the reference template up-
dating, based on the distribution of interspeaker distances.
The following equation, based on empirical results, is used to
set the threshold for each customer:

6(k)=a(fipg(k)- Gpp (k) +b (12)

where (k) is the threshold for the customer k, Jpg(k) and
0pg (k) are mean value and standard deviation for the distribu-
tion of interspeaker distance, respectively. a and b are con-
stant parameters which are set experimentally, the same values
being used for all customers and for all data sets.

Fig. 5 shows an example of typical intraspeaker and inter-
speaker distance distributions. Equation (12) indicates that
as the mean value of the interspeaker distance becomes larger
and the standard deviation becomes smaller, the decision
threshold becomes larger. The intraspeaker distance distribu-
tion is not taken into account in the calculation of the decision
threshold. There are two reasons for this. First, the intra-
speaker distance distributions are fairly uniform from speaker
to speaker. Second, it is difficult to obtain stable estimates of
the distribution of intraspeaker distance for small numbers of
training utterances, whereas it is easy to estimate interspeaker
distance distributions by cross comparison of the training
utterances between different customers.

A posteriori equal error decision thresholds were also used
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Fig. 5. Example of typical intraspeaker and interspeaker distance
distributions.

to compare the results with those obtained using a priori
thresholds.

F. Reference Construction

The establishment and updating of reference information is
another important element of the system. For each kind of
data set, three or five utterances were used to construct a
reference template for each customer. Two methods of refer-
ence updating were observed. In the first method, the refer-
ence template was updated every seventh access by the cus-
tomer using his latest utterances (method 1). In the second
method, it was updated each time the system was accessed by
the customer (method 2). The procedure for establishing the
initial reference template is the following. The first training
utterance is used as a basic utterance, to which the second is
brought into time registration. After registration the time
functions of the feature parameters of the first two utterances
are averaged and the third is brought into time registration
with the averaged function and then averaged into it. When
five utterances are used to construct the reference template,
the fourth and fifth utterances are also brought into time
registration and included in the averaging.

The training utterances are also used for the calculation of
the weighting function which is used in the distance measure
of (10a) and (10b), the interspeaker to intraspeaker variability
ratio of (4) which is used in feature selection, and the inter-
speaker distance distribution which is used to set the decision
threshold using (12).

I1I. SAMPLE UTTERANCES

Several kinds of utterarice sets were used to evaluate this
system. Fig. 6 is a block diagram which shows the procedures
used to create the utterance sets. The speech was utteredin a
sound booth and recorded over conventional dialed up tele-
phone lines or a high-quality microphone. The signal was
bandlimited from 100 to 3200 Hz, which is the nominal tele-
phone bandwidth. The telephone speech was processed by
the following three transmission systems:

1) clear channel—i.e., no additional processing,

2) adaptive differential pulse code modulation (ADPCM)
coding,

3) linear predictive vocoding (LPC).

The ADPCM coder used in this experiment was a simulation
of the coder built by Bates [12], based on the work of Cum-
miskey er al. [13]. Fig. 7 shows a block diagram of the
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ADPCM system. Since the required sampling rate for the
ADPCM coder was 6 kHz, a sampling rate conversion system
was used to convert it from 10 kHz to 6 kHz at the input to
the coder [14]. The signal bandwidth was reduced to 2.6 kHz
for the ADPCM coder in the sampling rate conversion system.
In the coder, a 4-bit adaptive quantizer was used to code the
differential signal giving an overall bit rate of 24 kbits/s for the
coder [13].

A block diagram of the LPC vocoder is given in Fig. 8. The
implementation was based on the autocorrelation method of
linear prediction [15], [16]. Pitch detection and voiced-
unvoiced decision were performed using the modified auto-
correlation pitch detector of Dubnowski er al.{17]. A 12 pole
LPC analysis (p=12) was performed using a pitch adaptive
variable frame size, at a rate of 100 frames per second [18].

=

Io, ytr-k)
ytr-
ket

LPC ANALYZER | LPC SYNTHESZER

Fig. 8. Block diagram of the LPC system.

TABLE 1
UTTERANCE SETs UsED IN EXPERIMENTS
Number of
Male or | Customers & Samphing
No. | Female Impostors Recording Channel | Frequency
()] Male 10 + 40 Telephone Clear 6.67 xHr
@ e . . . 6
(8] ' ADPCM | 6
W . . LPC 6
(5) - 2t + 55 High Quality Clear 6.67
Microphone
(6) Female 10 + 40 Telephone Clear 6.67

No quantization of the LPC parameters was used in this
experiment.

The sampling rate of the signal passed through the LPC
vocoder or the clear channel was converted from 10 kHz to
6.67 kHz, or if bandlimited to 2.6 kHz, converted to 6 kHz.

The telephone speech utterance set includes the following.

1) 50 recordings made by each of 10 male and 10 female
speakers over a period of two months. The first 10 recordings
were made once a day; the remaining 40 were made twice a
day (morning and afternoon). These speakers were designated
“customers.’”

2) One recording made by each of 40 male and 40 female
naive speakers. These speakers were designated “impostors.”
There was no attempt to mimic the “customers.”

The speech recorded over a high-quality microphone was
bandlimited from 100 to 3200 Hz and sampled at 6.67 kHz.
The high-quality speech utterance set includes the following.

1) 26 recordings made by each of 21 male customers over
a period of two months. Each was recorded on a different day.

2) One recording made by each of 55 male impostors with
no attempt to mimic the customeérs.

Two all-voiced sentences were used in the recordings. The
males.used the sentence, “We were away a year ago” and the
females used the sentence, “I know when my lawyer is due.”
Table 1 summarizes the six kinds of utterance sets used in this
experiment. All the low-pass filters of 3.2 kHz and 2.6 kHz
are digital filters, except that the 2.6 kHz low-pass filter ap-
plied to ADPCM speech is an analog hardware filter.
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Fig. 9. Interspeaker to intraspeaker distance ratio for the first ten
utterances by five speakers each extracted from utterance set (1).

IV. EXPERIMENTAL RESULTS
A. Results for Utterance Set (1)

The first experiment was performed using utterance set (1),
which is a set of utterances by ten male customers and 40
male impostors recorded over a conventional telephone con-
nection, transferred through a clear channel and sampled at
6.67 kHz. The distance measure D, is used in the experiments
in Sections [V-A-D. The cepstrum normalization technique
using the averaged value of the cepstrum is not applied to the
experiments in these sections.

1) Distance ratio: In order to evaluate the feature parame-
ters from the viewpoint of their effectiveness for speaker veri-
fication, the ratio of the average value of interspeaker distance

-to the average value of intraspeaker distance defined by (4).
was calculated for each parameter.

Fig. 9 shows the results for an utterance set which uses the
first 10 utterances by five customers each. Fig. 10 shows the
results for an utterance set which comprises the middie 10
utterances by five customers each. It can be seen from these
figures that all of these parameters have distance ratios greater
than one, which means that all of them are useful to distin-
guish speakers. The original cepstrum coefficients are gen-
erally most effective and the higher the order of the poly-
nomial coefficients becomes, the less effective they become,
irrespective of the order of the cepstrum.

A preliminary experiment indicated that using utterances
from ten customers in the feature selection process produced
no improvement in speaker verification accuracy over the
procedure described here using five customers.
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TABLE 11
AVERAGE ERROR RATES. UTTERANCE SET: No. (1). FR: FaLse REJECTION
(FALSE ALARM). FA: FaLsE ACCEPTANCE (Miss RATE).

Threshold FR | Fa —FR—;ﬂ
A Estimated | 0.29% | 0.08% 0.19%
Priori | Fixed 0.29% | 0.31% 0.30%
A Posterion 0%

Based on these results, 18 parameters which have a relatively
large distance ratio were selected. These are all ten cepstrum
coefficients and all the first-order polynomial coefficients ex-
cept coefficient index numbers 5 and 8. None of the second-
order polynomial coefficients were included in this selected
parameter set. The choice of 18 for the number of selected
parameters was decided arbitrarily.

2) Speaker verification: Table II shows the mean-error rate
of speaker verification when five utterances were used to estab-
lish an initial reference template which was updated every
seventh utterance by each customer. The mean interval be-
tween training and test utterances is nearly six days. Three
types of decision thresholds were applied. The error rates were
averaged over ten customers and presented in this table. When
the threshold is set a posteriori the error rate is completely
zero. When the threshold is set a priori the mean-error rate of
false acceptance and false rejection can be made as small as
0.19 percent using the optimum threshold estimation tech-
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TABLE 111
AVERAGE ERROR RaTES. UTTERANCE SET: No. (6). FR: FaLse REJECTION
(FaLSE ALARM). FA: FALsE ACCEPTANCE (Miss RATE).

Threshold FRo| Fa | FRIIA
A Estimated | 0.29% | 0.43% | 0.36%
Pron | Fixed 029% | 054% | o042%
A Posterioni 0.06%

nique presented in Section 1I-E. When the threshold is fixed
to a value which is common to all customers, the mean-error
rate increases to 0.30 percent. These results show that the
speaker verification techniques proposed in this paper are very
powerful for telephone speech.

3) Effects of time interval between training and test
utrerances: Intersession variability for a given speaker is one
of the most important problems in speaker verification (7],
[8]. In order to check the effect of the time interval between
training and test utterances on speaker verification accuracy
this interval was varied from six days to six weeks comparing
test utterances with reference templates constructed at times
corresponding to the specified intervals. In this experiment 14
utterances were used as test inputs by ten customers each, and
five utterances were used to construct each reference tem-
plate. The experimental results indicated that verification ac-
curacy is not affected by time intervals between training and
input utterances of at least six weeks.

B. Results for Utterance Set (6)

The second experiment was performed using utterance sct
(6) which comprises the utterances by ten female customers
and 40 female impostors recorded over a conventional tele-
phone connection.

The ratio of interspeaker distance to intraspeaker distance
for each parameter was calculated using the first ten utterances
by five customers each. The result was similar to the result for
male speakers shown in Fig. 9. The original cepstrum coeffi-
cients are most effective and the second-order polynomial co-
cfficients are less efficient than the first-order ones. This re-
sult was used for the selection of 18 parameters, which include
all ten cepstrum coefficients and all the first-order polynomial
coefficients except coefficients index numbers 4 and 9.

Table III presents the speaker verification results under the
same conditions observed for the male speaker set described in
the previous section; a reference file was constructed using
five utterances and updated every seventh access by each cus-
tomer. Although the error rates for the female utterance set
are slightly larger than those for the male utterance set, they
are still very small.

Results for a speaker verification experiment in which a
reference template was constructed using five utterances and
the time interval between training and test utterances was
varied up to six weeks were quite similar to that of the male
speaker set. There was no significant increase in error rate
when the interval is extended to six weeks.
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Fig. 11. Two reference updating procedures used for utterance set (5).
In Method 1, a reference template is updated every seventh access by
the customer. In Method 2, a reference template is updated each time
the system is accessed by the customer. In both methods, the latest
five utterances are used to update the reference template.

C. Results for Utterance Set (5)

In the third experiment, utterance set (5) which comprises
26 utterances by 21 male customers each and a single utter-
ance by 55 impostors recorded over a high-quality microphone
was used to test the speaker verification system. In this case
the 18 selected parameters include the first nine cepstrum co-
efficients and the first nine first-order polynomial coefficients.

Fig. 11(a) shows the time relation between training and test
utterances in speaker verification experiments for the condi-
tion that five utterances were used to construct a reference
template for each customer and that it was updated every
seventh access by the customer. Table IV-shows error rates
averaged over 21 customers. Results of the first, middie. and
last seven input utterances are averaged separately. False re-
jection error is very large for the first seven input utterances.
Initial variability like this was also shown in the previous ex-
periment by Rosenberg [4] .

In order to improve the results for the first seven input
utterances, the second method for reference updating was in-
troduced. The reference template was updated at cach time of
the customer’s access using the latest five utterances as shown
in Fig. 11(b). Table V shows the results of the verification ex-
periment using this method. In this case, the error rate for the
first seven input utterances is not significantly larger than
those for the middle and last seven utterances. Compared with
Table 1V, it can be also concluded that frequent updating of
the reference template is quite efficient for several initial input
utterances but it is not necessary to do it for the remaining
utterances. If we apply the second reference updating method
to the first seven input utterances and the first reference up-
dating method to the remaining utterances, we can achicve
verification error rate of less than one percent using the
a priori estimated threshold.
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TABLE IV
AVERAGE ERROR RATES. UTTERANCE SET: NO. (5). REFERENCE UPDATING:
MEeTHOD 1. FR: FALSE REJECTION (FALSE ALARM). FA: FALSE
ACCEPTANCE (Miss RATE).

Uttzrances
Threshold Error

First Middle Last
FR 476% | 0.68% | 0.68%
Estimated FA 0.68% | 0.73% | 0.98%
% 1712% | oms | 0832

A
Prioni FR 9.52% | 0.68% | 2.04%
Fixed FA 0.66% | 0.66% | 0.88%
% 5.09% | 0.67% | 1.46%
A Posteriori Equal 117% | 0.713% | 0.24%

TABLE V

AVERAGE ERROR RATES. UTTERANCE SET: No. (5). REFERENCE UPDATING:
METHOD 2. FR: FaLse REJECTION (FALSE ALARM). FA: FaLsE
ACCEPTANCE (Miss RATE).

Utterances
Threshold Error

First | Middle Last
FR 0.68% | 0.68% 0%
Estimazted FA 0.86% 0.60% 0.60%
IR+ FA | om% | 0645 | 030%

A
Pnon FR 1.36% 0.68% 0.68%
Fixed FA 0.56% 0.74% 0.57%
ER*FA losen | omz | 063
A Postenioni Equal 0.94% | 0.17% | 0.34%

D. Results for Utterance Set (3)

In the fourth experiment, utterance set (3) which comprises
50 utterances by ten male customers each and a single utter-
ance by 40 impostors, recorded over a conventional telephone
connection and transformed by a 24 kbit/s ADPCM system,
was used to evaluate the speaker verification system. In this
case, the 18 selected parameters include all ten cepstrum co-
efficients and all the first-order polynomial coefficients ex-
cept coefficients with index numbers 1 and 2.

Table VI shows the results of speaker verification experi-
ments when an initial reference template for each customer
was constructed using five utterances and updated every
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TABLE VI
AVERAGE ERROR RATES, UTTERANCE SET: No. (3). FR: FaLse REJECTION
(FALSE ALARM). FA: FALSE ACCEPTANCE (Miss RATE).

Theeshald RO Fa | FREA
A Estimated || 0.29% | 0.83% 0.56%
Prion
Fixed 1.43% | 1.46% 1.45%
A Postzrioni 0.04%
TABLE VII
AVERAGE ERROR RATES BY ESTIMATED a priori THRESHOLD.
Utterance set No. (1) No. (6) No. (5) No. ()
Customers 10 Male 10 Female 21 Male 10 Malc
Impostors 40 Male 40 Female 55 Male 40 Male
Transmission Telephone | Telephone | Microphone Telephone
24 kbjs ADPCM
False Rejeciion
(False Alarm) 0.29% 0.29% 0.68% 0.29%
Faise Acceplance
(Miss Ralc) 0.08% 0.43% 0.86% 0.83%
Average 0.19% 0.36% 0.77% 0.56%
Number of Trals 5.500 5,500 12,726 5.500

seventh access. Although the error rates are slightly larger
than those obtained for clean speech presented in Table II,
both false rejection and false acceptance are still less than one
percent even when the decision threshold is set a priori by
(12). Speaker verification results showing the effect of ex-
tending the interval between training and test utterances up to
six weeks indicated that the error rate was slightly greater
than that obtained for clean speech.

Table VII shows the summary of the results of speaker veri-
fication experiments for utterance sets (1), (3), (5), and (6).
using the a priori threshold specified by (12). For utterance
set (5), reference templates were updated following each access
for the first seven test utterances using the latest five utter-
ances. After the seventh utterance, updating was carried out
every seventh access. For all other utterance sets updating was
carried out only after each seventh access. For all utterance
sets except (5) there were 35 customer test utterances and 515
impostor test utterances per customer for a total of 350 cus-
tomer and 5150 impostor trials, respectively. For utterance
set (5) there were 21 customer test utterances and 585 im-
postor test utterances per customer for a total of 441 customer
and 12 285 imposter trials, respectively.

Although this table indicates a higher error rate for micro-
phone speech than for telephone speech, the difference is sta-
tistically insignificant since the number of utterances which
caused the verification error is very small.
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V. EXPERIMENTS USING MIXED TRANSMISSION SYSTEMS
A. Experimental Design

In order to investigate the effects of several transmission sys-
tems on the speaker verification system more thoroughly, the
reference and test utterances were subjected to different trans-
mission systems and evaluated using the same techniques used
in previous experiments with homogeneous transmission con-
ditions. One difference between the techniques used in
previous experiments and this experiment is that the trans-
mission characteristics normalization method, subtracting the
time averages from cepstrum coefficients, described in Section
II-A, was applied to all utterances in this experiment.

Utterance sets (2), (3), and (4), each of which comprises 50
utterances by ten male customers each and a single utterance
by 40 male impostors were used in the experiment. They were
recorded over a conventional telephone connection trans-
mitted over clear, ADPCM and LPC vocoder channel, respec-
tively. All of these utterances were sampled at 6 kHz.

B. Result of Preliminary Experiments

1) Distance ratio: Ten utterances by five customers each
were used to calculate the ratio of averaged interspeaker dis-
tance to averaged intraspeaker distance for each feature pa-
rameter. In the ten utterances, five utterances were trans-
mitted over clear channel and the remaining five utterances
were transmitted over the ADPCM system for each speaker.
The results which were similar to that obtained for the utter-
ance set which comprises only ADPCM speech indicated that
the feature parameters, especially normalized cepstrum co-
efficients and the first-order polynomial coefficients, have a
great amount of individual information which is not affected
by the difference between clear and ADPCM channels.

2) Comparison berween two distance measures: Before
starting the speaker verification experiment which uses differ-
ent combinations of the utterance sets, a preliminary experi-
ment was carried out to compare speaker verification perfor-
mance using the two distance measures D, and D, described
in Section II-D.

In this experiment the reference template for each customer
was constructed by the training utterances transmitted over
the ADPCM system, and test utterances were transmitted over
the LPC vocoder system. The results are given in Table VIII
showing error rates for the two distance measures. The error
rates are quite similar although the error rates obtained using
D, are generally somewhat smaller than those obtained using
D,. The correlation coefficient between the two sets of dis-
tances is 0.992. The calculation time for D, is much smaller
than D,. Based on these results, D, is used hereafter in the
transmission systems experiments.

C. Result of Speaker Verification Experiments

Table IX shows the summary of the results of speaker veri-
fication experiments for nine combinations of transmission
systems. When the reference and test utterances are subjected
to different transmission systems, the crror rate is slightly
larger than the error rate which is obtained when all the utter-
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TABLE VIIi
AVERAGE ERROR RATEs. TRAINING UTTERANCES: ADPCM. Test
UtTerRANCES: LPC. FR: FALSE REJECTION (FALSE ALARM). FA: FaLse
ACCEPTANCE (Miss RATE).

Diswance
Measure Threshold fR Fa FR_:FL
Estimated { 1 1% | 070% 121%
D, A Prion
{square) Fixed 200% | 20a% 202%
A Posienon 016%
Esumated || } 14% | 1.13% t 1%
D, A Pnon
(absolute) Fited 1% | 208% 1 90%
A Posterion 012%
TABLE IX

AVERAGE ERROR RaTES. FR: FALSE REJECTION (FALSE ALARM). FA:
FALSE ACCEPTANCE (Miss RATE).

Test

Training Threshold Error
Clear | ADPCM LPC
FR 0.25% 143% 0.86%
Clear A Prion FA 0.62 0.64 0.74
(Estimated) ”—;Fi 0.6 104 | o0so
A Posterion Equal 0.0 008 0.02
FR 1.43 0 86 t1s
ADPCM A Prion FA 0.66 098 113
(Lstimatcd) F—R;ﬁ 105 |- 091 114
A Posternion Equal 008 006 612
FR 0357 tie 029
LPC A Prion FA 097 0.80 t 38
(Esumated) FR—':FA 0 097 084
A Posienon Equa! l 0 | 01y 002

1

ances are subject to the same transmission system. But even in
the worst case, which is the combination of ADPCM and LPC
vocoded speech, the average error rate by the estimated
a priori threshold is only one percent. It means that the
speaker verification method investigated in this paper has little
degradation even when the reference and test utterances are
subjected to different transmission systems.

Fig. 12 shows plots of false rejection and flase acceptance
for each transmission system combination as a function of in-
dividual customers. Part (a) shows false rejection rates and
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Fig. 12. False rejection (a) and false acceptance (b) as a function of the
training system testing system pair and customer. C -clear channel,
V—LPC vocoder system, A—ADPCM system.

part (b) shows false acceptunce rates. The reader should note
that the scales of the two figures are different. A high degree
of variability in scores exists among customers for each pair of
transmission systems. The variability between scores for pairs
of transmission system is almost negligible compared with the
variability of scores within a pair of transmission systems.
Table X shows error rates when cepstrum normalization is
omitted for the combination of LPC vocoder and ADPCM
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TABLE X
AVERAGE ERROR RATES WiTH No CEPSTRUM NORMALIZATION.
TRAINING UTTERANCES: ADPCM. Test UTTERANCES: LPC,

Threshold Errot Erro- Rate
Fabse Rejection
(Falsz Alarm) 114%
A Prion False Accepuance
(Esumated) {Miss Rate) 130%
Avcrage 1.22%
A Posteniori Equal 0.52%

channel transmissions for test and training utterances, respec-
tively. The distances between reference and test utterances
are generally much greater than those obtained when cepstrum
normalization is applied. Accordingly, the parameter b in the
threshold estimation equation is changed to a value which is
appropriate to make the two kinds of error rates almost same.
The larger error rates obtained when cepstrum normalization is
omitted confirms the effectiveness of the cepstrum normaliza-
tion technique.

The error rates for the homogeneous conditions in Table IX
are slightly different from the previous results described in
Sections IV-A and IV-D, since the sampling frequency of
“clear” speech is different between the previous and present
experiments, and the cepstrum normalization technique was
not applied in the previous experiments. From these com-
parisons, it is apparent that when the difference of the trans-
mission characteristics between reference and test utterances
is small, cepstrum normalization slightly increases the verifica-
tion error rate by removing the long-term speaker-related
information.

In the next section, the effectiveness of the cepstrum
normalization will be investigated using gn utterance set which
has very large differences between the transmission character-
istics of reference and test utterances.

D. Experiments with Artificial Transmission Variation

The utterance set by ten male customers and 40 male im-
postors recorded over a conventional telephone connection
was used in a speaker verification experiment. All utterances
were passed through a 3 kHz low-pass filter and sampled at
6.67 kHz. Training utterances were processed with pre-
emphasis, whereas preemphasis was omitted for test utter-
ances. This results in a simple but large difference in frequency
characteristics between training and test utterances. Two ex-
periments were performed to study the effect of cepstrum
normalization; verification using normalized cepstrum and
verification using unnormalized cepstrum. The results are
shown in Table X1. There are very large differences between
the results for normalized cepstrum and unnormalized cep-
strum. [t is evident that cepstrum normalization is very power-
ful, and small error rates can be obtained even when there are
large frequency characteristic differences between the training
and test utterances.
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TABLEFE X1
AVERAGE ERROR RATES. TRAINING UTTERANCES! PROCESSED BY
PreEMPHASIS. TEST UTTERANCES: UNPROCESSED BY PREEMPHASIS.
FR: Fatse ReEJECTION (FALSE ALaRM). FA: FALSE ACCEPTANCE
(Miss RATE).

C:psn:.m 1 T
Nosmalizauon Threshald FR FA 'R ; FA )
Estimated 0 k6% 0647 [
YiS A Prion:
Fited 086% 0787 0823
A Postenon 014%
Estimated || 10 57% | 1315% 1l §6%
! NO A Prion - —
Fixed 17 147 | 16495 16527
l A Posterior 9 665 J

VI. Discussion
A. Comparison Between Cepstrum and Log Area Ratio

In order to check the advantage of the cepstrum coefficients
derived through LPC analysis (LPC-cepstrum), which have
been used in this paper. log area ratio parameters, which are
arctanh transformation of PARCOR coefficients, were ex-
tracted from the utterance set (1) and studied. Log area ratios
were found to be very good parameters for speaker verification
in previous experiments by the author [19]. Fig. 13 shows
distance ratios for each time function of log area ratios and
polynomial coefficients derived from them. The results for
cepstrum coefficients which were extracted from the same
utterance set was shown in Fig. 10. Comparing Figs. 10 and
13, it can be seen that cepstrum coefficients are more efficient
than log area ratios for speaker verification.

Table XII shows the results of a speaker verification experi-
ment using log area ratios and polynomial coefficients derived
{rom them compared to the results using cepstrum coeffi-
cients. In this experiment, 10 utterances by 10 customers
each and a single utterance by 40 impostors were used. The
first three utterances were used to construct a reference tems-
plate for each customer, and the remaining seven customer
utterances and impostor utterances were used as test utter-
ances. A constrained endpoint dynamic time warping tech-
nique was used in this experiment. The error rate results show
that cepstrum coefficients have an advantage over log area
ratios.

Fig. 14 shows examples of spectral envelopes derived from
10 cepstrum coefficients or 10 log area ratios for a spoken
sentence ‘“We were away a year ago.” Log area ratios are trans-
formed into linear predictor coefficients and the spectral en-
velope is computed using the correlation function of the co-
efficients. Time sequences of the envelope for the first 100
frames are shown in these figures. The frame interval is 10 ms.
Spectral envelopes derived from cepstrum coefficients are
much smoother than those derived from log area ratios along
both the frequency axis and time axis. In other words, the
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Fig. 13. Interspeaker to intraspeaker distance ratio for each time func-
tion of log area ratios and polynomial coefficients derived from
them. Ten utterances by five male speakers each were used for the
analysis.

TABLE XII
AVERAGE ERROR RATES. UTTERANCE SET: SUBSET OF THE UTTERANCE
SET (1). THRESHOLD: A posteriori EQuAL ERROR THRESHOLD.
TiMe REGISTRATION: CONSTRAINED ENDPOINT DyNaMIC TiME
WARPING. NUMBER OF TRAINING UTTERANCES: 3.

Featur: Parameters | Error Rate
Cepstrum 0.80%
Log A-ea Ratio 1.59%

spectral envelope sequence by cepstrum coefficients is more
stable than that obtained using log area ratios.

Fig. 15 shows comparisons of four kinds of spectra; short
time speech spectrum, spectral envelope derived from log area
ratio, spectral envelope derived from LPC-cepstrum, and spec-
tral envelope derived from conventional cepstrum coefficients
which are extracted through Fourier transformation of the log
power spectrum (FFT-cepstrum). Results for two frames in
the sentence are presented in the figure. It can be seen that
spectral envelopes derived from LPC.cepstrum and FFT-
cepstrum are quite similar and are much smoother than those
derived directly from LPC parameters, which is very sensitive
to spectral peaks.

B. Comparison Berween LPC-Cepstrun and FFT-Cepstrum

As indicated in Fig. 15, a spectral envelope derived from the
LPC-cepstrum is slightly different from a spectral envelope de-
rived from the FET-cepstrum. In order to study the effect of
this difference on speaker verification, several experiments
were performed using utterance set (6) which consists of fe-
male utterances. The size of the time window was set to 256
samples (38.4 ms) to extract the FFT-cepstrum, while the win-
dow size used to extract LPC-cepstrum was 30 ms. The FFT-
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Fig. 14. Spectral envelopes derived from ten cepstrum coefficients
(a) or ten log area ratios (b) for a spoken sentence, “We were away a
year ago.” Time sequences of the envelope for the first 100 frames
(1 s long) are shown.

cepstrum computation time which includes two Fourier trans-
formations is almost twice that of the LPC-cepstrum.

The distance ratio for each parameter derived from the FFT-
cepstrum was calculated. The result was similar to that for the
LPC-cepstrum except that the speaker dependent information
in the FFT-cepstrum tends to concentrate in the first-order
cepstrum. Overall average distance ratios for cepstrum coeffi-
cients, the first-order polynomial coefficients and the second-
order polynomial coefficients are 2.15, 1.89. and 1.45, re-
spectively, for LPC-cepstrum, and 2.07. 1.83, and 1.37.
respectively, for FFT<epstrum. LPC-cepstrum has slightly
larger values than FFT-cepstrum, but the difference is very
small.

Table XIII shows the results of a speaker verification experi-
ment using FFT-cepstrum under the same condition as that
using LPCcepstrum whose results were presented in Table I11.
The difference in error rates between these two experiments is
very small. Speaker verification results using FFT-cepstrum
when the interval between training and test utterances was
long was similar to the results obtained using [.PC-cepstrum.

It is apparent that the LPC-cepstrum produces almost the
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Fig. 15. Comparison of four kinds of spectra; short time speech spec-
trum, spectral envelope derived from log area ratio, spectral envelope
derived from LPC-cepstrum. and spectral envelope derived from FFT-
cepstrum. (a) For the sound /if in “We ....”" (b) For the sound fof
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in ... ago.

TABLE XIII
AVERAGE ERROR RATES. UTTERANCE SET: No. (6) (FFT-CePsTRUM).
FR: Fause ReJecTiON (FALSE ALARM). FA: FALSE ACCEPTANCE
(Miss RATE).

Threshold ol ora | RTIA
Esumated || 0.29% | 0.33% oN%
A
Pnori | Fired 086% | 0.74% 0 0%
A Postenon 002% J

same results in speaker verification as the conventional FFT-
cepstrum, while it takes only half the time to calculate the
LPC-cepstrum compared with the FFT-cepstrum.

C. Effectiveness of Polynomial Coefficients

In order to study the effectivencss of the use of polynomial
coefficients on speaker verification, an additional experiment
was performed in which the polynomial coefficients were
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TABLE X!V
AVERAGE ERROR RATES. TRAINING UTTERANCES: PROCESSED BY
PreEMPHASES. TEST UTTERANCES: UNPROCESSED BY PREEMPHASIS,
FR: Farse RejecTion (Farse ALARM). FA: FALSE ACCEPTANCE

(Miss RATE).
F:z‘"”'—’——'— P
Parameters Threshuld FR FA FR ; kA
Esumzted | 2 29% 1.69% 199%
Cepstrum A —4
Cocfiients | Pnon Fired J4% | 2% 273%
A Postenion 064%
Esumated | 0.86% | 064% 07:%
Cepstrum A
and Priont Fited 086% | 0.78% 082%
Polynomal
Cocfhcients
A Postenon 0.14%

omitted using only the time functions of the first to tenth
cepstrum coefficients. The training and test utterance record-
ing conditions are the same as the experiment described in
Section V-D. where preemphasis is applied to the training utter-
ances but omitted for the test utterances. Cepstrum normal-
ization was applied to all utterances. Table XIV shows the
verification error rates including previous results which were
obtained when polynomial coefficients are included. It can be
seen that error rates are increased by a factor of three or more
when polynomial coefficients are omitted.

D. Optimum Length of Speech Segment for
Polynomial Expansion

In the experiments described so far, the length of the speech
segment for which time functions of cepstrum coefficients are
expanded by an orthogonal polynomial representation has
been set to 90 ms. This value was determined to be adequate
for preserving transitional information between phonemes. In
order to check the appropriateness of this value of length,
additional speaker verification experiments were performed
varying the length between 50 ms and 210 ms. Training utter-
ances were processed with preemphasis but test utterances
were not. Cepstrum normalization was applied to all utter-
ances. The condition for the experiment in the previous sec-
tion corresponds to the condition of zero length segment. The
speaker verification error rates with a priori or a posteriori
threshold are plotted in Fig. 16 as a function of segment
length, including the results of the previous section. For the
a priori threshold condition, the averaged values of false ac-
ceptance and false rejection rates are plotted. The verification
error rate is a minimum for 170 ms and the error rate increases
both for shorter and longer lengths.

Although 90 ms is not the optimum value, the difference be-
tween the error rates for 90 ms and the optimum value of
170 ms is small. The number of computation increases in pro-
portion to the segment length. Based on these considerations,
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Fig. 16. Lrror rate versus the length of the speech segment for orthogo-
nal polynomial expansion. Training utterances were processed with
preemphasis, whereas test utterances were not.

TABLE XV
AVERAGE ERROR RATES. UTTERANCE SET: No. (1). TiIME REGISTRATION:
CoNSTRAINED END-PoINT Dy~namic TiME WARPING. FR: FALse
REJECTION (FALSE ALARM). FA: FALSE ACCEPTANCE (Mi1ss RATE).

Threshold FR | Fa L‘;ﬂ‘—
Estimated || 0.40% | 0.43% 0.42%
A
Prion Fixed 0.87% | 0.58% 0.58%
A Posterion 0.04%

it can be concluded that 90 ms is a reasonable value for poly-
nomial expansion in this speaker verification system.

E. Comparison Between Unconstrained Endpoint and
Constrained Endpoint Dynamic Time Warping Methods

Table XV shows speaker verification results when con-
strained endpoint dynamic time warping is used. Other condi-
tions are the same as the experiment whose results were shown
in Table II. The error rate using the constrained endpoint
method is almost twice as that using the unconstrained end-
point method. This result shows the advantage of the uncon-
strained endpoint dynamic time warping method, which can
cope with the uncertainty in the location of both the initial
and final frames due to breath noise, etc., over the constrained
endpoint method.

F. Effectiveness of Dynamic Time Warping Guided by
Shorter One of Either Input or Reference

In Section II-C it was stated that optimum matches are ob-
tained by using as guide the shorter of either the input or
reference contours. This warping procedure was used in all
the speaker verification experiments described in this paper.
To show the effect of not observing this procedure an addi-
tional experiment was performed. Utterance set (5) was used
in a speaker verification experiment in which the input utter-
ance exclusively was used as the guide. This is referred to as
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the UEGI (unconstrained endpoint guided by input) method,
in contrast to the UEGS method [unconstrained endpoint
guided by (the) shorter (of reference and input)] adopted in
all other experiments.

A reference template of each customer was constructed
using five utterances and updated at every access by the cus-
tomer for the first seven test utterances (method 2) and up-
dated every seventh access-by the customer for the remaining
test utterances (method 1). Decision thresholds were set
a priori based on (12).

Mean error rates for this utterance set using the UEGI pro-
cedure are plotted in Fig. 17 along with the results obtained
earlier using the UEGS procedure. It can be seen that, al-
though false acceptance error rates are comparable for the two
techniques, false rejection rates for the first and middle seven
input utterances are much greater for the UEG! procedure.
This outcome may be attributed to the fact that until stable
references are established by updating, the lengths of reference
and input utterances are quite variable. Therefore, large dis-
crepancies can be expected between the UEGI and UEGS pro-
cedures. Howg.ver, with stable references associated with the
last seven input utterances the lengths of input and reference
utterances are more consistent and little or no discrepancy is
expected between the two techniques.

When warping is guided by the input utterance, the first
frame of the input may be warped to the first through
(6 + 1)th frame of the reference where 8 specifies the width of
the allowable range. Similarly, when warping is guided by the
reference, the first frame of the reference may be warped to
the first through & + 1th frame of the input.

An experiment was carried out using 26 utterances from
each of the 21 male customers in utterance set (5). Each cus-
tomer’s utterances were paired with the customer’s reference
and matched two ways, using the input utterance as the guide
and the reference utterance as the guide. For each such pair,
the slave frame matched to the first guide frame for the better
of the two matches (the match resulting in the lower overall
distance) was tabulated. This tabulation is presented in the
histograms of Fig. 18.

Along the abscissa is plotted the slave frame minus one
(matched to guide frame number one) with the input as slave
plotted along the positive axis and the reference as slave
. plotted along the negative axis. Equivalently, the positive axis
represents matches in which the reference is guide while the
negative axis represents matches in which the input is guide.
Each histogram point represents the number of optimum
matches corresponding to the indicated slave frame. The re-
gion enclosed by the shaded vertical bars represents optimum
matches which can be obtained by using either the reference
as guide or input as guide. For example, optimum matches
within the shaded region to the left of the y-axis, which ate
actually obtained using the input as guide. are substantially the
same when guided by the reference, matching the first refer-
ence frame to the first input frame. Thus, from Fig. 18(a) all
but 9.5 percent of the optimum matches are obtained by using
the reference as guide, while all but 5.7 percent are obtained
by using the input as guide.

Fig. 18(b) and (c) decompose the matches of Fig. 18(a)
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Fig. 17. Comparison of error rates for two dynamic time warping
techniques; UEGI and UEGS. Results for utterance set (3).

374) 848%
(42) 95% g 7
o 'En (25 57%
v
<
~ 20} ]
il I
o
0 rer 1] l 1. o N
-5 -10 -5 ] B 0 [
I (262) 853%
r
8 A
3 20f G371 4% _ 8) 26%
lod H
z ol g
3 :
I TR 2 A Lo
- 974% —5UIDED BY e
5 30~ INPUT m2) 6%
3 20 |- 5)  37% a7y 12.r%
Z 10} . J
e
° I1:¢1] [ 1 R o
T GUIDED BY 96.3%
REFERENCE
REFERENCE INPUT

Fig. 18. Histograms for the starting frame of the optimum warping
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number of frames of input function.

into two categories. In Fig. 18(b) all the optimum matches
are shown for which the input length is less than or equal to
the reference length, while in Fig. 18(c) are shown all the
optimum matches for which the reference length is less than
the input length. It can be seen immediately that the greatest
number of optimum matches is associated with using as guide
the shorter of the input and reference. That is, in Fig. 18(b)
all but 2.6 percent of the optimum matches are obtained by
using the input as guide, while in Fig. 18(c) all but 3.7 percent
of the optimum matches are obtained by using the reference
as guide.
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TABLE XVI
AVERAGE ERROR RATES. UTTERANCE SET: No. (1). TiME REGISTRATION
ConSTRAINED END-PoINT DyNaMiC TiME WARPING. NUMBER OF
TraINING UTTERANCES: 3. FR: FaLse ResecTioN (FALSE ALARM).
FA: FALSE ACCEPTANCE (M1ss RATE).

Theeshold R | Fa | fRZEA
Estimated | 069% | 087% 0.78%
A
Pnon Fixed 114% | 1 15% 1 15%
A Postenor 0 14%

G. Effect of the Number of Training Utterances

Table XVI shows the results of a speaker verification experi-
ment in which three utterances were used to construct a refer-
ence template. Other conditions are the same as the experi-
ment whose result was shown in Table XV (Section XI-E),
which means that constrained endpoint dynamic time warping
method was used. Comparing Table XV and XVI, it can be
seen that using three utterances to make a reference template
is not adequate. The error rate becomes almost twice that ob-
tained when five training utterances are used.

Next, the number of training utterances was increased to
ten. and a speaker verification experiment was performed.
However, it produced no improvement compared with the re-
sults using five training samples to construct a reference tem-
plate. Tt can be concluded that five utterances are necessary
and sufficient to make a reference template.

H. Threshold Estimation

In this paper, (12) is used to set an a priori decision thresh-
old for each customer. This equation and two parameters in it
were determined experimentally. Fig. 19 shows the relation
between dpg(k)- Gpp(k) and equal error threshold 6., (k)
which produces the equal error of false acceptance and false
rejection. This is the result of the speaker verification experi-
ment using utterance set (3) which produced the error rates
shown in Table VI. The correlation coefficient between
tpg(k)- Gpg(k) and 0¢q(k) calculated from these values is
0.753. This result indicates the appropriateness of using (12)
to estimate the optimum decision threshold.

To determine the effect of varying the parameter b in (12)
on the error rate. all the customer utterances and impostor
utterances which were tested in the speaker verification ex-
periment using the mixed transmission system (Section V)
were scanned by varying the parameter b. The parameter a
was set to 0.6, which was determined experimentally. The
number of errors was tabulated at each step by comparing the
actual overall distances with the estimated threshold using
the varied parameter value b. False acceptance rate and false
rejection rate were averaged and plotted in Fig. 20. Results
for nine conditions, which are nine combinations of three
training systems and three testing systems, are shown. As the
result of increase in false acceptance rate for large threshold
values and increase in false rejection rate for small threshold
values, the averaged error rate has a concave slope as a function
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Fig. 19. Relation between Spg(k) - 8pg(k) and equal error threshold
0eq- Results of the speaker verification experiment using utterance
set(3).
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Fig. 20. Error rate versus & parameter in the threshold estimation equa-
tion. The cffects of parameter variation on the average of false rejec-
tion and false acceptance error rates are shown using the estimated
decision threshold. Results for nine training system testing system
pairs are plotted.

of b. The optimum value of the parameter b, which produces
the minimum average error rate, is seven almost irrespective of
the experimental condition. This is the value consistently used
in this paper to estimate an optimum threshold for each cus-
tomer. As there is some tradeoff between the two kinds of
error rates, if it is desirable to keep the false acceptance rate at
a much lower value, the parameter b should be set at a value
smaller than seven, even though it increases the false rejection
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Fig. 21. Error rate versus decision threshold. The effects of threshold
variation on the average of false rejection and false acceptance error
rates are shown using the threshold. Results for nine training system-
testing system pairs are plotted.

rate. Conversely, values of b larger than seven produce a
smaller false rejection rate and a larger false acceptance rate.
The dashed line in Fig. 19 indicates the relation

8eq =0.6 (Apg - Opg)+ 7. (13)

Fig. 21 shows verification error rate, which is the mean value
of false acceptance rate and false rejection rate, as a function
of decision threshold for the same experimental conditions.
Results for the nine conditions are plotted. The reader should
note that the scale of this figure is different from the previous
one. This result shows that the optimum value of the thresh-
old varies considerably depending on the utterance set. Thus,
it is very difficult to set the threshold in advance independently
of the utterance set.

These results indicate the effectiveness of the threshold
estimating method using (12).

1. Withholding Decision

Another tabulation was carried out to assess the effect on
error rate of withholding decision (sequential decision) on
trials for which | D¢ - 8 | < A, where Dy and 0 are the overall
distance and threshold, respectively. When the decision is
withheld on a given utterance, a new distance is calculated
which is the mean of the distances of the withheld utterances
and the succeeding utterance. Utterance sets (1), (3), (5), and
(6) were used in this experiment. As these utterance sets in-
clude only one utterance for each impostor, impostor utter-
ances were not used in this experiment.

Fig. 22 shows error rates as a function of the withholding
threshold A. Part (a) shows the results when reference tem-
plates were updated every seventh trial for each customer, and
part (b) shows averaged error rates over several conditions
when the interval between training and test utterances were
varied from six days to six weeks. Fig. 23 shows the per-
centage of withheld trials, which is the percentage of addi-
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Fig. 24. Normalized error rates versus percentage of withheld trials.
(a) and (b) correspond to (a) and (b) in Fig. 22, respectively.

tional trials, as a function of the withholding threshold A.
Fig. 24 shows the relation between the percentage of withheld
trials and the error rate normalized by the error rate obtained
without withholding. Part (2) and part (b) correspond to part
(a) and part (b) in Fig. 22, respectively. Fig. 24 indicates that
at least 30 percent improvement in error rate can be obtained
with decisions withheld on five percent of the trials and an
average 73 percent improvement can be obtained with de-
cisions withheld on ten percent of the trials.

J. Combination with Pitch and Intensity Contours

Speaker verification systems based on pitch and intensity
contours have been evaluated in Bell Laboratories using the
same utterance sets used in this paper [1]-[5].

As the information conveyed by pitch and intensity con-
tours is considered to be almost independent of that conveyed
by the cepstrum, the combination of these two kinds of in-
formation will improve the performance.
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In order to test the independence of these two kinds of in-
formation, the distribution of speaker verification error rates
by cepstrum and that by pitch and intensity contours were
compared with each other and a correlation coefficient be-
tween them was calculated. When all the error rates plotted
in Fig. 12 and the error rates obtained with the same condi-
tions using pitch and intensity contours are used, the correla-
tion coefficient is 0.22 and ~0.36 for false rejection and false
acceptance, respectively. It can be concluded that the two
kinds of information are fairly independent. Based on these
results, an improvement in performance can be expected by
combining these two kinds of information.

VII. SUMMARY

A new system for automatic speaker verification has been
implemented on a 16-bit laboratory computer and evaluated.
A fixed, sentence-long utterance is analyzed by cepstrum co-
efficients by means of LPC analysis. Frequency-response dis-
tortions introduced by transmission systems are removed
automatically. Time functions of cepstrum coefficients are
expanded by orthogonal polynomial representations and com-
pared with stored reference functions. After dynamic time
warping, a decision is made to accept or reject an identity
claim. Reference functions and decision thresholds are up-
dated for each customer. The total processing time is approxi-
mately 40 times real time in this computer simulation.

In the first part of the experiment, three sets of utterances
were used for the evaluation of the system. The first and
second sets each comprises 50 utterances by ten customers
each and a single utterance by 40 impostors recorded over a
conventional telephone connection. The third set comprises
26 utterances by 21 customers each and a single utterance by
55 impostors recorded over a high-quality microphone. The
first and third sets were uttered by male speakers, whereas the
second set was uttered by female speakers. The evaluation in-
dicated mean error rates of 0.19 percent, 0.36 percent, and
0.77 percent for each utterance set, respectively.

Second, the first utterance set was processed by an ADPCM
coding system and an LPC coding system. These utterance
sets were used for a speaker verification experiment together
with an unprocessed utterance set. Experimental results indi-
cate that the transmission system affects the verification ac-
curacy only slightly even if the reference and test utterances
are subjected to different transmission conditions.

Third, the time interval between reference and test utter-
ances was changed from six days to six weeks. Results of the
experiment indicate no significant increase of verification error
with the increase of time interval.

These results verify the robustness of the new speaker verifi-
cation system presented in this paper. Some discussions on
new techniques used in this system are also included in this
paper. 4

Further investigations, current or projected, include a large-
scale and long-term evaluation over telephone lines permitting
direct customer access and on-line response, and specialized
hardware processing to improve response time.
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