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USING VQ-DISTORTION AND DISCRETE/CONTINUOUS HMMS 
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NTT Human Interface Laboratories 
9-11, Midori-Cho 3-Chome 

Musashino-Shi, Tokyo, 180 Japan 

ABSTRACT 

This paper compares a VQ (vector quantization)- 
distortion-based speaker recognition method and dis- 
crete/continuous ergodic HMM (hidden Markov model)- 
based ones, especially from the viewpoint of robustness 
against utterance variations. We show that a continu- 
ous ergodic HMM is as robust as a VQ-distortion method 
when enough data is available and that a continuous er- 
godic HMM is far superior to a discrete ergodic HMM. 
We also show that the information on transitions between 
different states is ineffective for text-independent speaker 
recognition. Therefore, the speaker identification rates us- 
ing a continuous ergodic HMM are strongly correlated with 
the total number of mixtures irrespective of the number of 
states. It is also found that, for continuous ergodic HMM- 
based speaker recognition, the Distortion-Intersection Mea- 
sure (DIM), which was introduced as a VQ-distortion mea- 
sure to increase the robustness against utterance variations, 
is effective. 

1 INTRODUCTION 

For text-independent speaker recognition, VQ-based 
methods [1]-[2] were proposed many years ago. In recent 
years, HMM-based methods [3]-[6] have become popular 
for speech recognition and have also been applied to speaker 
recognition. However, the effectiveness of HMM-based 
speaker recognition methods has not been made clear. 

Our recent study [7] reported a VQ-based method that 
is robust against utterance variations even when only a 
short utterance is available. Rosenberg [3] has reported a 
method using left-to-right HMMs, and other studies [4]-[5] 
have proposed using linear predictive ergodic HMMs. Savic 
and Gupta [6], on the other hand, examined speaker veri- 
fication by comparing test samples and the reference vec- 
tors assigned to  each state of an ergodic HMM. Until now, 
an ergodic HMM has been assumed to be effective for 
text-independent speaker recognition because it automat- 
ically forms broad phonetic classes corresponding to each 
state, even though few studies have directly used the like- 
lihood of an ergodic HMM, and none have yet examined 
the difference in performance between discrete and contin- 
uous HMMs in text-independent speaker recognition. Al- 
though Tishby [5] has reported differences between the per- 
formance of VQ-distortion and linear predictive ergodic 
HMMs for digit utterances, the difference between VQ- 
distortion and regular ergodic HMMs has not yet been an- 
alyzed. 

This paper compares a VQ-distortion-based speaker 
recognition method and discrete/continuous ergodic HMM- 
based ones, especially from the viewpoint of robustness 
against utterance variations. 

2 METHODS 

In speaker recognition using VQ-distortion [2], VQ code- 
books are created for each reference speaker. As shown in 
Figure 1, input speech frames are vector-quantized using 
the codebooks of reference speakers, and the VQ-distortion 
values accumulated over all frames are used to identify or 
verify the speaker (the recognition decision). 

In the ergodic HMM approach, on the other hand, a 
speaker-dependent ergodic HMM is first made for each ref- 
erence speaker and the HMM parameters are estimated us- 
ing the Baum-Welch algorithm, and then the accumulated 
likelihood of an ergodic HMM for input speech frames is 
used for recognition decision. The work reported here uses 
fuzzy-vector-quantization-based discrete models as discrete 
HMMs, and it uses mixture-Gaussian HMMs with diagonal 
covariance matrices as continuous HMMs [8] (Figure 1). 

------------------------------------------------, 

Figure 1. Speaker recognition procedure. 

3 EXPERIMENTS 

3.1 Experimental conditions 

The database consisted of sentence data uttered at  three 
speeds (normal, fast, and slow) by 23 male and 13 female 
talkers. This database was recorded on three occasions 
over six months. Cepstral coefficients were calculated by 
LPC analysis with the order of 16, a frame period of 8 ms, 
and a frame length of 32 ms. Ten sentences uttered at  
normal speed on one occasion were used for training, and 
five sentences uttered at  normal, fast, and slow speeds on 
the other two occasions were used for testing. The duration 
of each sentence was about 4 s. 

11-157 

0-7803-0532-9192 $3.00 0 1992 IEEE 



100.0 

E 95.0 

B 
i: 
I 
il 
b 80.0 

(D 75.0 

70.0 

mk. Mixture 
u c o d . b o o k s k e  

CadcbOoL .ha: l-state - l-data 1- M.ls- 
32 64 128 258 512 &nix Emk dcmix 126nrlx 2wt. 1 0 2 b  

VQUstodon Continuous HMM Discrde HMM 

Figure 2. Speaker identification rate (%). 
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Figure 3. Speaker verification rate (%). 

LBG algorithm was used for creating VQ codebooks. 
HMM parameters were initialized as follows. For dis- 
crete HMMs, output probabilities were initialized using h i5  
tograms of codewords. For continuous HMMs, the length 
of each training sample was divided by the total number of 
mixtures (the number of states times the number of mix- 
tures assigned to each state), and the mean and covariance 
values of each segment were calculated. Two transition 
probabilities derived from the same state were initialized 
identically. Two arcs derived from the same state had the 
same output probabilities. 

3.2 Results 

Figures 2 and 3 show the results of speaker recogni- 
tion experiments. They indicate that a continuous ergodic 
HMM is as robust as a VQ-distortion method against utter- 
ance variations, and it is far superior to a discrete ergodic 
HMM. In a VQ-distortion method, the codebook size of 256 
is enough for speaker recognition under the experimental 
conditions. 

4 DISCUSSION 

4.1 Difference between discrete and continuous 
ergodic HMMs 

Let us consider the difference in performance between 
discrete and continuous ergodic HMMs. In a discrete er- 
godic HMM, the output probability of each test vector is 
set to the output probability of the nearest VQ codebook 
vector as shown in Figure 4. In text-independent speaker 
recognition using a short utterance with intrinsically wide 
variability, the test vector distribution deviates from the 
training vector distribution. In such a case, if there is a sig- 
nificant number of test vectors for which the output prob- 
ability of the nearest VQ codebook vector associated with 
a different speaker is high, the recognition is poor. With a 
continuous ergodic HMM, the output probability of such a 
test vector is low because it corresponds to the tail of the 
Gaussian distribution. Here, a continuous ergodic HMM is 
therefore superior to a discrete ergodic HMM. 
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Figure 5. Speaker identification rates as functions of the numbers of states and mixtures. 

: DbmteHMM 

: A:lcdvcctOr 

ContinuousHMM .! ':codaword \ ...... . - - - ----....... -. 
Figure 4. Illustration of discrete HMM vs. continuous 
HMM. 

As shown in Figure 2, in a discrete HMM, when the code- 
book size is bigger than 1024, the identification rates may 
be higher, but the amount of training data and calculation 
becomes enormous. 

4.2 Performance of continuous HMMs wi th  differ- 
e n t  numbers of states and mixtures 

Speaker identification experiments were also carried out 
using continuous ergodic HMMs with different numbers of 
states and mixtures. For all utterance speeds, the identifi- 
cation rate increased as the number of states and mixtures 
increased (Figure 5 ) .  The identification rates are highly 
correlated with the total number of mixtures (the number 
of states times the number of mixtures assigned to each 
state). The identification rates using 32 mixtures are al- 
most saturated except for the fast speed case. These results 
indicate that information on transitions between different 
states is not effective for text-independent speaker recog- 
nition. All the transition probabilities between different 
states in these experiments were between 0.1 and 0.2. 

4.3 Robustness against  different amounts of train- 
ing data 

The performance of VQ-distortion and continuous 
HMMs for different amounts of training data was alsoinves- 
tigated. Figure 6 shows the results of speaker identification 
experiments using two different training sets: one training 
set consisted of the 10 sentences used in the experiments re- 
ported in the previous sections, and the other training set 
consisted of 5 sentences selected out of the 10 sentences. 
The VQ codebook size was 256 or 512 in the VQ-distortion 
method. The continuous HMMs had one state and 16, 32, 
or 64 mixtures. Figure 6 indicates that identifying speakers 
using continuous HMMs needs more training data, and also 
indicates that when the amount of training data is small, 
the results for 32 mixtures are much better than those for 
64 mixtures. This is probably because the estimation of the 
continuous HMM parameters is difficult when the amount 
of available data is small, so the identification rates for a 
continuous HMM-based method become lower than those 
for a non-parametric method such as a VQ-distortion-based 
method. 

4.4 Effect of applying the DIM to continuous 
HMMs 

In a VQ-distortion method, the Distortion-Intersection 
Measure (DIM) [7] is characterized by selective matching 
using only a stable subset of test vectors in the distortion 
calculation. The stable subset is defined as the intersec- 
tion space between a set of test vectors and a set of VQ 
codebook vectors. The intersection space is determined by 
using the scope of VQ codebook vectors. If, as shown in 
Figure 7 (a), a test vector is not included in the scope of the 
nearest VQ codebook vector, the quantization distortion is 
set to the boundary value of the scope. With continuous 
HMMs, the idea of DIM is implemented by flattening the 
tail of each Gaussian distribution. If a test vector corre- 
sponds to the tail of the Gaussian distribution, the output 
probability is set to the flattening value (Figure 7 (b)). In 
this paper, the flattening was experimentally started at the 
value of 3 U for each Gaussian distribution. 
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Figure 7. Illustration of applying the DIM to (a) VQ and 
(b) continuous HMM. 

Table 1 lists the results of speaker identification experi- 
ments using DIM in the framework of a continuous HMM. 
HMMs had one state and 32 mixtures in the experiments. 
These results indicate that DIM can be applied to contin- 
uous HMMs effectively. 

Table 1. Speaker identification rates applying the DIM. 

continuous HMM 
speaking 1-state 32-mizture 

fast 83.6 84.8 
slow 87.5 88.6 

5 CONCLUSION 

This paper has compared text-independent speaker 
recognition methods that use VQ-distortion and dis- 
crete/continuous ergodic HMMs. A continuous ergodic 
HMM is as robust as a VQ-distortion method against utter- 
ance variations and it is much better than a discrete ergodic 
HMM. The speaker identification rates using a continuous 

ergodic HMM are strongly correlated with the total num- 
ber of mixtures irrespective of the number of states. The 
information on transitions between different states is not 
effective for text-independent speaker recognition. More- 
over, when the amount of available data is small, a VQ- 
distortion method is more robust than a continuous HMM. 
The DIM method improves the continuous ergodic HMM- 
based speaker recognition. 
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