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ABSTRACT

For text-independent speaker identification and verifica-
tion based on the Multivariate Auto-Regression model, we
consider two distance measures: the Log Likelihood Ra-
tio (LLR) and the Symmetrized Likelihood Ratio (SLR)
measure, which is a symmetric version of the Likelihood
Ratio measure. The results of experiments indicate that
the LLR gives better performance than the SLR for longer
training data of 5 or more sentences, and the SLR measure
is better for shorter training data. When 10 sentences are
used for training, identification and verification rates (after
likelihood normalization) are almost the same as those ob-
tained by an HMM-based method. The optimum order of
the MAR model is 2 or 3, and the optimum frame period
is 16 ms.

1 INTRODUCTION

Various speaker models and distance/distortion mea-
sures have already been proposed for text-independent
speaker recognition. Most of these models use static fea-
tures, such as long-time averaged spectrum or the distribu-
tion of feature parameters. The distribution is represented
by vector quantization (VQ) codebooks or HMMs. A very
small number of studies on using dynamic features in text-
independent speaker recognition have been reported, and
this remains one of the important issues in this field.

In this paper we use Multivariate Auto-Regression
(MAR) to obtain a text-independent dynamic speaker’s
model, following the approach taken in [1]. We consider
two different distance measures: the Log Likelihood Ratio
(LLR) and the Symmetrized Likelihood Ratio (SLR). The
formulation of LLR distance can be found in [2]; and the
formulation of SLR, which is an extension of the LLR, is
given here,

2 MULTIVARIATE AUTO-REGRESSION

Parameters of MAR models can be estimated by a pro-
cedure which is a generalization of the Durbin recursion
to the multivariate case (see [3] for more details). In this
section, we simply give the formulas necessary for the com-
putation of the MAR model.

Consider the multivariate auto-regression

P

ZAi Xick = e, (1)

k=0
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where {X¢} is an m-dimensional stationary process, {¢:}
is a zero mean, uncorrelated and stationary process, and p
is the order of the MAR model. The coefficients A are

m x m matrices with AY = I Analogous to the scalar
case, the auto-covariances 'y = E(X.X[_,) obey the
Yule-Walker relations
P
DAIT, =0 ;=12 .p 2
k=0
The coefficients A}, k = 1, 2, ..., p can be deter

mined from this linear equation system using the general-
ized Durbin recursion where the mean square error is min-
imized.

The generalized Durbin recursion is as follows:

ADYY = AL+ APTIAP L (3)
where b = 1, 2, ..., p.
Al = —A VY (4)
where ‘
P
V, = ZAzI‘—k. (5)
k=0
P
Ap = Y AT, 4y, (6)
k=0

Note that the coefficient estimates A} depend on the
fitting order p.

3 DISTANCE MEASURES

A distance or distortion measure is used to quantify sim-
ilarities between two speech signals. In general, we would
like a distance that is nonnegative and symmetrical. In
this paper, we consider two distance measures: the Log
Likelihood Ratio (LLR) and Symmetrized Likelihood Ra-
tio (SLR).

Let {X.}M3! be some spectral vectors of speaker X,
and {A?}P_, the MAR model derived from {X,}M'.
Similarly, let {Y.}Y - be spectral vectors of an unknown
speaker Y, and {Bf}Z_, the MAR model derived from
(Yn)olo

The residual error of X, filtered by the model {A}}]_,

is

P
A = Xy 4 3 AKXk, ™

k=1
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where n ;) ..., M — 1. The residual errors
eYB oXB e,,A can be obtained snmxlarl\ Then the co-
YB P XB
varlance matrices of the residual errms‘l;_;) \ ED . D) .
"A
and DY# are obtained from e*?, ¢¥?, e*¥ and e
respectively.

The LLR measure is defined as follows:
dXIR(X YY) = logeldet(DYA+« DYE-1) ()
The SLR is an extension of the LLR, and is defined as
follows:
SLR

d

= [:ict(D“ DY5(- 1) +
dem(D"B DX A=) /2. (9)

v

SLR
d2

dSLR(X, Y)

Note also that the term d7%® in-equation (9) is the LLR
without the log,, function, and the term d5 R is the sym-
metrization part.

4 SPEAKER RECOGNITION
For s Eeaker identification, the distance measures d*%F
and d°LF are calculated between each of the reference
speakers X and the unknown speaker Y. The reference
speaker that yields the smallest distance measure with re-
spect to a particular measure is considered to be the iden-
tity of the speaker Y.

For speaker verification, distance measures are calcu-
lated between tlie unknown-speaker and the reference
speaker whose identity has been claimed. The input speech
is accepted or rejected by comparing the distance with a
threshold. In our experiments, the threshold was set a pos-
tertori to equalize the probability of false acceptance and
false rejection.

5 DATA DESCRIPTION

The database consisted of 15 Japanese speakers: 10
males and 5 females. Each speaker uttered continuous
speech (various texis). A sentence was approximately 4 s
in duration. From the speech data, cepstral coeflicients of
order 16 were obtained from a 32-ms window every 16-ms
frame-period (baseline condition).

Three sets of data were used for training, test session 1,
and test session 2. Each data set was collected at a different
time. The data for test session 1 and training were collected
4 months apart; and test session 2 and training, 3 months
apart. In each test set, each speaker uttered 5 different
sentences.

6 EXPERIMENTS & RESULTS

In our experiments, we varied the nuinber of sentences
used in the training phase: 1, 2, 5. or 10 sentence(s). When
2 or more sentences were used, the auto-covariance matri-
ces were ensemble averaged over the number of sentences.
In the testing phase, only 1 sentence was used for all cases.
Note that the fitting order p was 2 for the baseline condi-
tion.

Speaker identification results for cach distance measure
are shown in Fig. 1. FEach identification rate was averaged

by 150, i.e. 15 speakers, 5 test sentences, and 2 sessions
per speaker The breakdowns of d°**® into two constituent
parts are shown in Table 1, which will be refered to later
in the discussion section.
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Fig. 1 : Identification rates as a function of the number of
training sentences (MAR order: 2)

Table 1: Indentification rates by each
constituent part of SLR (MAR order: 2)

uair,?ilxllgggncégces 4R (gUR) d’®
1 59.3% 60.7%
2 90.0% 79.3%
5 98.7% 92.7%
10 98.0% 91.3%

In Fig. 1, we make the following observations:

e The identification rate of LLR and SLR increases as
the number of training sentences increases;

¢ SLR has better rates for 1 training sentence, but LLR
has better rates for 5 and 10 training sentences.

Speaker verification results for each distance measure are
shown in Figure 2. There are 2 sets of results for speaker
verification: one using likelihood normalization [4] and one
without it. We can see that the normallzatxon dramatically
improves the rates of d¥*% and d5%
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Fig. 2 Verification rates as a function of the number of
training sentences (MAR order: 2)

The verification results after normalization seems to fol-
low the same trends as those in Fig. 1.

7 DISCUSSION
7.1 LLR vs. SLR

In this section, we discuss the differences between the
formulation of LLR and SLR, and how these differences af-
fect their performance. Since the results of speaker identifi-
cation and verification both follow the same trends, the dis-
cussion below applies to both cases unless otherwise stated.

From the results in the previous section, one may ask
the following questions:

o Why is the performance of SLR higher than that
of LLR for 1 training sentence, but lower for 5 and
10 sentences in speaker identification (Fig. 1)7 One
would expect SLR to consistently have better perfor-
mance since it uses more information.

¢ Why is the performance of LLR higher than that of
SLR for 5 and 10 sentences in speaker verification after
likelihood normalization (see Fig. 2)?

To answer these questions, we shall analyze each com-
ponent of d°%. Recall that d5“® is the sum of d7 LR and
d3 - % (see equation (9)).

First of all, we want a distance measure that is nonneg-
ative and symmetrical. Furthermore, we would like it to
attain a specific value in a certain (ideal) case; for example,
if there is a perfect match between the reference and test
data then the value of the distance should be unity. Both
LLR and SLR are actunally bounded below by unity.

Now, we shall answer the question of why SLR performs
better than LLR for 1 training sentence, but worse for 5
and 10 sentences in speaker identification. Again we look
at the individual identification rates in Table 1. (Note that
dLLR = deR.) We can see that the improvement by in-
creasing the number of training sentences is much smaller
for d5**® than for dfY®_ The reason for this, we believe,
lies in the stability of the model. From Eq. (9), only pa-
rameter A of di %" is variable while parameters Y and
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B are fixed in the comparison between input speech and
reference models. Since A becomes stable as the number
of training sentences increases, the performance of d5LR
improves steadily. On the other hand, in d5%R, only pa-
rameter B is fixed while other parameters, X and A, are
variable. Since the spectral vectors for training are directly
used in d3*®, it is probably not stabilized so much I}qu
the increase in the number of training sentences as d°F.
Thus the sum of di“® and d5L® has better identification
rates than that of d*Z® only for the one-sentence training
condition. Different weightings in the linear combination,
(1 — w)+dft® + wxdiLR ¢ < w < 1, raise the rates
to equal that of X417,

Finally, the reason why the performance of LLR is much
higher than that of SLR for 5 and 10 sentences in speaker
verification after likelihood normalization is as follows.
The likelihood normalization method implicitly uses re-
sults from speaker identification for normalizing the like-
lihood values. Since LLR has much better identification
rates than SLR for 5 and 10.sentences (Fig. 1), then this
is also the case for the verification rates.

7.2 Effects of the MAR order

As described in Sec. 6, we set the MAR fitting order of
p at 2 in the baseline experiments. In order to check the
effect of the order, additional experiments were conducted
by changing the order between 1 and 4. Figure 3 indicates
the speaker identification rates for LLR and SLR for the
two cases where the number of training sentences was 1
and 10. Identification rates were almost stable irrespective
of the order p when only one sentence was used for train-
ing. On the other hand, when 10 sentences were used for
training and LLR was used as the distance measure, the
identification rate increased as the MAR order increased
from 1 to 3. The improvement from the order 2 to 3 was
smaller than that {rom 1 to 2. There was no improvement
in the identification rate when the order was increased from
3 to 4. These results suggest that (1) one sentence is too
short for estimating an MAR model having an order larger
than 1; and (2) when 10 sentences can be used for training,
the optimum order of the MAR model is 2 or 3.
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Fig. 3: Identification rates as a function of the MAR order
(L: number of training sentences)




7.3 Effects of the frame period

In the experiments so far, the frame period for extracting
cepstral features was set to 16 ms. An additional exper-
iment was conducted to examine the effect of the frame
period on the identification accuracy. In this experiment,
the MAR order was fixed to 2. Therefore, the time period
for which the dynamic characteristics are represented by
the MAR models was changed in proportion to the frame
period. Experimental results shown in Fig. 4 indicate that
the optimum frame period across all the conditions of the
number of training sentences is 16 ms. Under this condi-
tion, the MAR model predicts cepstral vectors based on the
past two vectors observed 16 ms and 32 ms before, respec-
tively. In other words, speaker-specific spectral dynamics
over a 32-ms period is represented by the MAR model.
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Fig. 4: Identification rate as a function of the frame period

(MAR order: 2, distance measure: LLR, L: number of training sentences)

7.4 Combination with the HMM method

As described in previous sections, the MAR models rep-
resent dynamic features of the time series of cepstral vec-
tors. We also conducted a speaker recognition experiment
based on static features represented by an ergodic HMM
using the same speech database [5]. Since dynamic and
static information is rather independent, speaker recogni-
tion performance is expected to be improved by combining
these two types of information. An experiment was con-
ducted, in which the weighted sum of log likelihood values
obtained by MAR based on the LLR distance measure and
by HMM was calculated and used for making the decision.
The weighting factor was set a posteriori at the optimum
value that produced the best results. Table 2 summarizes
the recognition rates. Since the verification rate after nor-
malization by the HMM method is 100%, the combination
of MAR and HMM methods was tried only for identifica-
tion. The identification rate obtained by the combination
method was 98.7%, which is significantly higher than either
of the single methods.
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Table 2 : Comparison of recognition rates
(MAR order : 2, number of training
utterances : 10)

MAR MAR and
(LLR) HMM HMM
Identification 98.0 % 933 % 98.7 %
Verification
(unnormalized) 66.1 % 913 %
Verification
(normalized) 99.7 % 100 % —_

8 SUMMARY

Based on the Multivariate Auto-Regression (MAR)
model, we have analyzed the formulations and experiinen-
tally compared the performances of the Log Likelihood Ra-
tio (LLR) and the Symmetrized Likelihood Ratio (SLR)
measures for speaker identification and verification. The
experimental results indicate that the LLR measure per-
forms better than the SLR for longer training data of 5
or more sentences, while the SLR measure performs better
for shorter training data of 1 sentence. Therefore, the LLR
measure should be used when long training data is avail-
able, and SLR when only short training data is available.
Note that only 1 sentence was used for testing for all cases.

For speaker verification, the use of the likelihood nor-
malization dramatically improves the performance of both
LLR and SLR. Since the likelihood normalization uses re-
sults {rom speaker identification for normalizing the like-
lihood in speaker verification, the rates of the verification
follows the trends of the identification.

When 10 sentences are used for training, the MAR
method achieves almost the same identification and ver-
Hfication rates as an HMM-based method. The optimum
order of MAR model is 2 or 3, and the optimum frame
period is 16 ms.
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