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ADAPTATION METHOD BASED ON 
HMM COMPOSITION AND EM ALGORITHM 

Yasuhiro Minami and Sadaoki Furui 
"IT Human Interface Laboratories 
Musashino-shi, Tokyo, 180 Japan 

ABSTRACT 
A method for adapting HMMs to additive noise and 

multiplicative distortion at the same time is proposed. This 
method first creates a noise HMM for additive noise, then 
composes HMMs for noisy and distorted speech data from 
this HMM and speech HMMs so that these composed 
HMMs become the functions of signal-to-noise (SIN) ratio 
and multiplicative distortion. S/N ratio and multiplicative 
distortion are estimated by maximizing the likelihood of the 
HMMs to the input speech. To achieve this, we propose a 
new method that divides the maximization process into 
estimation of S/N ratio and estimation of cepst" bias. The 
S/N ratio is estimated using the parallel model method. The 
cepstrum bias is estimated using the EM algorithm. To 
evaluate this method, two experiments in terms of phoneme 
recognition and connected digit recognition are performed. 
The guarantee of convergence of this algorithm is also 
discussed. 

1. INTRODUCTION 
Background noise, channel noise, and channel distortion 

are serious problems in speech recognition. They can 
generally be modeled by combining additive noise and 
multiplicative distortion in the linear spectral domain. If 
adaptation for both additive noise and multiplicative 
distortion can be performed simultaneously in the speech 
model, effective speech recognition can be achieved. 

Many studies have been done on adaptation for either 
multiplicative distortion or additive noise [ 11-[6]. For 
multiplicative distortion, CMN (cepstral mean 
normalization), which regards the average of speech cepstra 
as multiplicative distortion, has been proposed [l]. Since 
CMN is a simple and powerful adaptation technique, it is 
widely used in many recognition systems. Sankar proposed 
the cepstrum bias (multiplicative distortion) estimation 
method based on the Maximum Likelihood (ML) method 
[2]. This method was applied to telephone speech and 
proved effective for multiplicative distortion. For additive 
noise, HMM decomposition, parallel model combination 
(PMC), and HMM composition were proposed [4][5][6]. 
These methods approximate the distributions of the random 

variables for noisy speech from the distributions of the 
random variables for speech and noise. 

These techniques treat either multiplicative distortion or 
additive noise. It is difficult to achieve adaptation for 
additive noise and multiplicative dizitortion at the same 
time, because nonlinear transformation occurs between 
cepstral coefficients and the linear spectrum. To solve this 
problem, we previously proposed a method that estimates 
additive noise and multiplicative distortion by maximizing 
the likelihood of HMMs [7]. However, our previous method 
required complex calculations to do this. 

This paper describes a method that can maximize the 
likelihood more easily. Modeling of noisy and distorted 
speech in the linear power spectrum (domain is discussed 
first. Then an adaptation method for additive noise and 
multiplicative distortion is discussed. 

2. NOISY AND DISTORTED SPEIECH MODELING 
Our model for speech signals in general noisy conditions 

n 

Figure 1. Model for producing noisy and distorted speech. 
r 

Figure 2. Converted model for producing noisy and 
distorted speech. 
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is shown in Figure 1. Speech signal S is produced by speech 
HMMs. Noise signal N is produced by a noise HMM. S and 
N are defined in the linear power spectral domain. S is first 
multiplied by multiplicative distortion G corresponding to a 
change in speaking style, etc. Then additive noise N is 
added to speech signal GS. At this time, N is multiplied by 
coefficient k corresponding to the power ratio between 
speech and noise. Finally, the speech signal is multiplied by 
multiplicative distortion H corresponding to line distortion, 
microphone distortion, etc. Using these notations, the final 
noisy and distorted speech signal is X = H(GS + kN) = 
HGS + WIN. By setting W = HG, X = WS + kHN = W(S + 
kHN/W) is obtained, so the basic noisy speech model can 
be converted into the model shown in Figure 2. The HMM 
for HN can be trained by using a signal without speech. The 
HMMs for S can be made from noise-free data. If k and W 
can be estimated, HMMs that generate X can be obtained. 
The problem is how to estimate k and W .  

3. ADAPTATION FORMULATION 
Ordinary HMM composition considered only additive 

noise. To estimate the values of k and W ,  we extended 
ordinary HMM composition so that composed HMMs may 
become a function of k and W .  A set of phoneme HMMs 
producing X is modeled by composing the kHN lW HMM 
and the S HMMs by the extended HMM composition. W 
and k are then estimated by maximizing the trellis 
likelihood score P(OIM(k,W)), where 0 ={x,, x2, ..., xr}  is 
a time sequence of input vectors and M(k,W) is a set of 
composed phoneme models as functions of k and W .  In our 
previous method, the steepest descent method was used to 
maximize P(OIM(k,W)). This method estimated k and W 
simultaneously, but it needed complex equations. In its 
place we propose a new method that divides the 
maximization process into k estimation and W estimation. 

The k is estimated using the parallel model method. In 
this method, several sets of models with different kj’s are 
prepared. Using these models, the likelihood scores, 
P(OM(kj,W)), are calculated for all j ’ s ,  and a set of models 
with maximum likelihood is selected. The W is estimated 
using the EM algorithm. 

Thus, our algorithm to find both k and W is as follows: 

\ 

Figure 3. Implementation of proposed method. 

1. Initialize W .  
2. Compose sets of HMMs, changing k; select the k that 

3 .  Compose the set of HMMs in the area bounded by 
gives the maximum value of P(OIM(R,W)). 

the dotted line in Figure 3 with the fixed klW 
obtained in step 2. 

cepstral bias estimation method. 

estimated W. 

4. Estimate W outside the dotted line by using Sankar’s 

5. Update klW inside the dotted line using the newly 

6 .  Repeat steps 2 to 5 until convergence is achieved. 

Sankar’s cepstral bias estimation method estimates bias b 
between x, and yf by using the EM algorithm, where xf is the 
input vector and y, is the corresponding vector produced 
from speaker independent HMMs; b is the inverse cosine 
transformation of the log transformation of W .  The equation 
for estimating b is 

where t is time, n and m are state numbers, Z indicates the Zth 
mixture component, and i indicates the ith element of the 
vector; ~ ( n ,  m, 1) is the joint probability of observing 0 and 
transiting from state n to state m from time t to time t+l and 
taking the Zth mixture component to produce x,. X(n, m, Z) 
can be calculated using the forward-backward algorithm. 

4. EXPERIMENTS 
Two experiments were performed to evaluate our 

method. One compared our method with ordinary HMM 
composition, our previous method, and Sankar’s method in 
terms of phoneme recognition. The other compared our 
method with CMN (cepstrum mean normalization) and 
ordinary HMM composition in terms of connected digit 
recognition. 

(1) Phoneme recognition experiment 
The speaker-independent HMMs were trained using 

speech data uttered by 64 speakers under noise-free 
conditions. The HMMs had three states, each with a four- 
mixture Gaussian distribution. The noise HMM had one 
state and a single Gaussian distribution. One sentence, with 
the transcription, uttered by one male speaker was used for 
adaptation. This means that adaptation was performed in a 
supervised mode. The evaluated sentences were 5 1 
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telephone directory inquiry sentences and were uttered by 
the same male speaker. Noise recorded in a computer room 
was added to each speech data at 6 and 12 dB signal-to- 
noise (S/N) ratio. The data was then passed through a filter 
whose characteristic was 1-0.972-I. The input data was 
sampled at 12 kHz. Although input features consisting of 
16-order cepstrum, 16-order delta cepstrum, and one delta 
power were used, only the cepstrum distributions were 
adapted to the noisy and distorted speech. We compared 
five methods: 

(a) No adaptation. 
(b) Ordinary HMM composition: k was set so that it gave 

the maximum likelihood to the adaptation speech. 
(c) Sankar’s method: The cepstrum bias (multiplicative 

distortion) was estimated by directly applying 
Sankar’s method to the adaptation speech. 

(d) Our method using the steepest descent method: This 
method was proposed in our previous paper [7]. k and 
W were estimated by maximizing the likelihood 
using the steepest descent method. 

(e) Our method using the EM algorithm: k and W were 
estimated by our new method. 

Figure 4 shows the experimental results. Methods (b) and 
(c) consider only additive noise or multiplicative 
distortion. Therefore, while both methods showed 
improvement in the recognition rate, the degree of 
improvement was small. On the other hand, our method 
showed great improvement for both S/N ratios. Our 
method showed almost the same performance using the 
EM algorithm as using the steepest descent method, and the 
only complicated equation required in our new method is 
Eq. (1). 
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Figure 4. Phoneme recognition rate for each adaptation method. 

(2) Connected digit recognition experiment 
In this experiment, four-digit strings were recognized 

when the number of digits was known. 9702 digit strings 
uttered by 70 male speakers were used for training speaker- 
independent HMMs. A whole-word HlMM was prepared for 
each digit. The number of states depends on the digits. The 
number of mixture components in each state was set to four. 
16-order cepstrum and 16-order delta cepstrum were used. 
The delta power was not used here. 

Adaptation was performed in an unsupervised mode. First 
a universal speech HMM was made by using all the training 
speech data. The speech HMM hac1 one state with 16- 
mixture Gaussian distribution. S/N ratio and multiplicative 
distortion were then estimated using the proposed algorithm 
from the speech HMM and noise HMM. Finally, HMMs 
with additive noise and multiplicative distortion were 
created from the noise HMM and the digit HMMs using the 
estimated SIN ratio and multiplicative distortion. 

1750 digit strings uttered by 50 speakers were 
simultaneously recorded using two microphones, a 
condenser microphone and a boundary microphone. The 
characteristics of the boundary microphone were very 
different from those of the microphone used in training. 

Two types of noise, computer room noise and car noise, 
were recorded using the same two microphones in an 
anechoic room. In the experiment, speech data were made 
by adding these to clean speech data so that the S/N ratios 
became 12 and 18 dB. In the experiment, CMN and 
ordinary HMM composition were compared with our 
method. Since the weight value when the noise data added 
to the speech data was made constant for the entire speech 
data over all speakers, the S/N of each speaker varied 
according to the loudness of voice (at 12 dB, it varied from 
4 to 17 dB). In ordinary HMM composition, k was estimated 
at each utterance by using step 2 in section 3. 

Table 1 shows the base-line recognition rates for the clean 
speech data. The recognition rate dropped by about 4% 
using the boundary microphone, compared to that with the 
condenser microphone. This was mainly due to the 
frequency characteristics of the boundary microphone. 

Table 2 shows the result for computer room noise using 
the boundary microphone. The recognition rate of our 
method was better, by 1.1 % at 12 dB 2nd by 2.1 % at 18 dB, 
than the ordinary HMM composition method. Moreover, it 
shows a great improvement over CMIV. 

Table 1. Base-line digit string recognition rate for clean speech. 

Boundary 

93.43% 

Condenser 
microphone 

97.3% 
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Table 3 shows the results for car noise using the boundary 
microphone. In this case, our method also improved the 
recognition rate by 1.8 % at 12 dB and 4.2 % at 18 dB. 

Method 

No adaptation 

5. DISCUSSION 
When an iterative algorithm is proposed, it should 

express a guarantee to converge the values. Unfortunately, 
our algorithm does not provide such a guarantee. Here we 
discuss where the guarantee is not satisfied. To do this, we 
must check steps 2,4, and 5 in section 3 (the other steps are 
not related to the guarantee of convergence). After step 2, it 
is obvious that the likelihood P(OUM(k,W)) is always bigger 
than before. This means that step 2 holds the guarantee. 
Because step 4 is the EM algorithm, after this step, 
P(OIM(R,W)) is also always bigger than before. However, 
there is no guarantee that P(OIM(k,W)) is always bigger 
than before when WW is replaced using the newly estimated 
Win step 5. However, in our experiments, we did not see 
the phenomenon of P(OIM(k,W)) causing the fluctuation. 
Moreover, P(OIM(k, W)) never decreased significantly 
after step 5. This confirms that our algorithm has no 
problems in practical use. 

12 dB 18 dB 

25.6 % 56.9 % 

6. CONCLUSION 
This paper described a method that can adapt HMMs to 

CMN 

Table 2. Digit string recognition rate with computer 
room noise (boundary microphone). 

33.6 % 69.9 % 
> 

ordinary 
HMM composition 59.2% 82.5 % 

I Proposedmethod I 60.3 % I 84.6% I 

87.2% Ordinary 
HMM composition 

Table 3. Digit string recognition rate with car noise 
(boundary microphone). 

82.6% 94.0% 

91.8% 

additive noise and multiplicative distortion at the same 
time. In this method, HMM composition is extended so that 
composed HMMs may become the functions of SIN ratio 
and multiplicative distortion. The method creates HMMs 
from speech HMMs and a noise HMM by extended HMM 
composition. It then estimates S/N ratio and multiplicative 
distortion by maximizing its likelihood for input speech. 
This algorithm was evaluated by the phoneme recognition 
experiment and the connected digit recognition 
experiment. The phoneme recognition result showed that 
our algorithm can achieve the same recognition rate as our 
previous algorithm, which required highly complex 
calculation. The digit recognition results showed that our 
new algorithm was more effective for additive noise and 
multiplicative distortion than CMN and ordinary HMM 
composition which considers only additive noise. 
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