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ABSTRACT 
Speech understanding can be viewed as a problem of 

translating input natural language of speech recognition 
results into output semantic language. This paper 
describes automatic acquisition of a language model for 
translating natural language into semantic language from a 
text corpus using a stochastic method. The method 
estimates co-occurrence probabilities of input and output 
grammar rules as a translation language model. Since the 
amount of texts is limited, estimating a reliable language 
model is difficult. Therefore, we propose a method of 
concisely modeling input and output grammars in order to 
estimate a reliable translation model. Our method is 
shown to be effective by experiments using the ARPA 
ATIS task. 

1. INTRODUCTION 
A speech understanding system requires two 

functions: one is speech recognition, which converts 
speech input into a sequence of words, and the other is 
language processing, which extracts meaning from the 
word sequence. As for speech recognition, we previously 
reported on the N-best search algorithm, which uses 
triphone context-de endent acoustic models for intra- and 

error rate of 5.2% for the ATIS task. 
This paper describes language processing which 

converts the natural language of speech recognition results 
into semantic language. Usually, language processing has 
been implemented by writing grammar rules manually. 
However, this takes a considerable amount of time and 
effort, and the grammar cannot easily transfered to other 
tasks. Therefore, automatic acquisition of a language 
model or grammar rules is strongly required. This paper 
describes a stochastic method of automatically acquiring a 
language model from a corpus. 

inter-word contexts 8' . This recognizer achieved a word- 

2. SPEECH UNDERSTANDING SYSTEM 
Figure 1 illustrates our configuration of a speech 

understanding system. The system consists of a speech 
recognition module and a language processing module. 
This paper focuses on the language processing module. 

The language processing module translates the speech 
recognition results into a database inquiry language. 
Although SQL is the database inquiry language for ATIS, 

a WIN (Wizard Input) sentence, which can be directly 
translated into an SQL inquiry, is available for each 
sentence in the ATIS corpus, so we used WIN sentences 
as the semantic language for our experiments. 

3. STOCHASTIC TRANSLATI ON LANGUAGE 
MODELING 

In the area of machine tramslation, a stochastic 
approach for machine translation was suggested about 50 
years ago. At that time, however, there were few 
machine-readable text database, and computer 
performance was too poor to implement the stochastic 
approach. 

In 1990, Brown et al. proposed a basic framework of 
stochastic language modeling for machine translation'2'. 
Brown et al. defined a translation language model as 

P(e)P(f I e) 
P(f) 

P(e If) = , 

where e is an English sentence and F is a French sentence. 
One can translate French into English by finding 

6 = arg max P(e)P(f I e) . (2) 
e 

The language model P(e) is estimated using English 
texts. The translation language model P(f  le) is 
estimated using a parallel text corpus, which consists of 
French and English sentences. They reported that 
P(e)P(f I e )  can achieve better trainslation than P(e I f), 

because P(e) results in sentences that consists of more 
natural Engli~h'~'. In their experiment using the Hansard 
corpus, they set a vocabulary size of 58K for French and 

translation 

7 

Figure 1 Speech understanding system 
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Figure 2 Estimation of the translation language model and 
translation using the model 

41K for English, and used 1.7M pairs of sentences to 
estimate the translation language model. The method was 
tested using 100 sentences which were not included in the 
training set. They reported that 60 of the 100 sentences 
were acceptably tran~lated'~'. Although they used many 
pairs of sentences, the estimation may have been 
inefficient because they estimated the translation language 
model P(e)P(f I e) directly from raw texts which are 
sometimes redundant or ambiguous. 

Pieraccini et al. proposed a method that extracts the 
semantic structure from a sentence by using a stochastic 

This method converts the word sequence of 
speech recognition results into a sequence of concepts. 
They formulated a speech understanding problem to find 
Wand e in 

~(w, I A )  = WX P(W, c I A) , 

where A is acoustic observation of speech, W is a word 
sequence, and C is a sequence of concepts. Since 

(3) wxc 

(4) 
P ( A  I W ,  C)P(W I C>P(C) 

P(A) 
P(W, C I A) = 

holds, they estimated P ( A  I W, C) = P ( A  I W) as an 
acoustic model, and P(W I C)P(C) as a concept language 
model. The concept language model is an HMM, in 
which word sequences are observation vectors and 
sequences of concepts correspond to a hidden state 
sequence. 

Vidal et al. extended this idea to translation from 
natural language into semantic language replacing 
concepts with grammar rules". They first generated 
grammar rules for input natural language and output 
semantic language from the training texts using the Error 
Correcting Grammar Inference (ECGI) algorithm"', then 
estimated the conditional probabilities of the grammar 
rules of the input and output language. For practical 

applications, however, input natural language varies 
widely, and the number of grammar rules becomes very 
large. This makes it difficult to accurately estimate a 
translation language model because the matrix of the 
conditional probabilities becomes sparse. 

This paper proposes a method of coping with the 
sparseness of the conditional probabilities. We incorporate 
the context-free grammar inference algorithm proposed by 
McCandless et al."' into the estimation of the translation 
language model. Using this grammar inference, we can 
reduce the number of states in each grammar network, 
because similar words are merged into non-terminal 
symbols. 

4. LANGUAGE PROCESSING FOR SPEECH 
UNDERSTANDING 

Figure 2 illustrates ' an estimation of a stochastic 
translation language model, and also shows a translation 
using the model. The upper figure shows the estimation 
of the language model. Using input natural language and 
output semantic language, grammar networks are 
generated by using the ECGI algorithm. Then, for each 
pair of natural and semantic language sentences, 
sequences of grammar rules are obtained and conditional 
probabilities are calculated. The lower figure shows the 
process of translating a natural language sentence into a 
semantic language sentence. The input sentence is parsed 
and a sequence of grammar rules is derived. Then the 
translation language model is applied and a sequence of 
output grammar rules is found. The output semantic 
language sentence is determined by the Viterbi search in 
the output grammar network; this sentence is the best path 
for the sequence of grammar d e s .  

4.1 Generation of a grammar network 
Grammar networks for input and output languages are 
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generated using the ECGI algorithm. The ECGI 
algorithm parses sentences one by one from the training 
set, and adds necessary states and transitions to the 
existing grammar network to parse the input sentence. 
The best alignment between the input sentence and the 
grammar network is determined using the Error 
Correcting Parsing (ECP) alg~rithm'~'. New states and/or 
transitions are added along with the best path. The 
Levenstein distance defined by the Eq. ( 5 )  is used as the 
distance measure for ECP alignment. 

Here, p ,  q, and r are weighting factors, s is the path in the 
grammar network, sub, is the substitution error, ins, is 
the insertion error, and del, is the deletion error. 

The number of states in the ECGI-derived grammar 
network depends on the order in which sentences are 
presented in the ECGI algorithm. If the longer sentences 
(in terms of number of words) are given first, the shorter 
sentences can take advantage of existing grammar states 
generated by the longer sentences, thus the number of 
states becomes relatively small. 
4.2 Estimation of translation language model 

We estimate the conditional probabilities of the input 
and output grammar rules by using input-output pairs of 
training sentences. 

Let GI and Go be the input and output grammars. 
The problem is to find 9 that satisfies Eq. (6). 

(6a) 

(6b)  

d(X,Y)=min(p.sub,+q.ins,+r.deZ,) (5)  
S 

i, = argmax P(y I x) 
Y E L ( %  ) 

Y EUG0 1 
= argmax P ( x  I y)P(y)  

Sentences x andy can be represented as sequences of 
grammar rules DG, (x) and DGo (y) .  

D ~ ~ o = { T ; ; , ~ A  ,...,rc € G I }  (7) 

D G o ( y ) = { r ~ ~ , r ~ ~ , . . . , r ~ m  I r& EGO} (8) 
If G, and Go are unambiguous grammars, DGl(x) and 
DGo(y) are uniquely found. Otherwise, DGl (x) and 
DGo ( y )  can be approximated using the Viterbi algorithm. 
Eq. (6) can thus be rewritten as 

Vidal et al. defmed P(DGI (x) I DGo (y ) )  as 

p( DGl ( X I  I DGo (Y))  

and estimated the conditional probabilities based on Eq. 

(96). 
There, P(not r, I ro) is the probabdity of not using r, 

in the input derivation, given that r,, is used in the output 
derivation. When the grammars are very small, using 
P(not rl I ro) is effective. However, our grammar is 

roughly three times larger than Viidal's grammar. For 
practical grammars, evaluating inellevant co-occurrences 
along with relevant co-occurrences can contaminate the 
effectiveness of the conditional ]probabilities. It also 
makes the computation inconvenient because the product 
of the probabilities becomes very sinall as the number of 
terms increases. Threfore, we decided not to use 
P(n0t r, I ro). 

Since there are usually fewer grammar rules for 
semantic language than for natural language, we estimated 
P(DGo ( y )  I DGl (x)) based on Eq. (9a), instead of 

estimating P(DGl(x) I DGo(y)) based on Eq. (96). Thus, 

P(DGo ( y )  I DGl (x)) is estimated as 

P(DGo(Y)IDGI(x))JP(r ,  Ir;,T;,...J;) 

where N ( x )  is the number of sentences that GI can 
generate. It is impossible to calcullate N ( x )  in practice, 
so we approximate the probability as 

When there are many grammar rules, estimating 
P( DGo ( y )  I DGI (x)) is difficult beleause the probability 

parameter space becomes sparse as the number of 
grammar rules increases. Therefore, the number of 
grammar rules must be decreased. 
4.3 Grammar state reduction using context-free 
grammar inference 

McCandless et al. proposed a context-free grammar 
inference alg~rithm'~'. This algorithm generates grammar 
rules in a bottom-up manner by using word bigram 
probabilities as the distance me,asure. The distance 
measure between words or non-terminal symbols is 
defined as follows. 
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