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ABSTRACT

This paper describes a way of improving extended HMM
composition that can precisely adapt HMMs to both noisy and
distorted speech. To do this, we incorporate the variance of power
into extended HMM composition using quantization to approximate
the Gaussian distribution of the Oth order cepstrum. Consequently,
a distribution of noisy speech is approximated in the linear spectral
domain as a mixture of log normal distributions.

This method is evaluated by a four-digit recognition experiment
when the number of digits is known. Two types of noise, computer
room noise and car noise, are used and noisy and distorted speech
data is made by adding these types of noise to speech data recorded
using a boundary microphone. Results show that the proposed
method improves recognition rates for noisy and distorted speech
compared with our previous method.

1. INTRODUCTION

Several new noise adaptation techniques, called HMM
decomposition, PMC, or HMM composition that create HMMs for
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Figure 1: HMM composition.

noisy conditions from speech HMMs and a noise HMM have been
proposed {1][2](3]. These methods approximate the distributions of
the random variables for noisy speech from the distributions of the
random variables for speech and noise. We showed that the HMM
composition technique performed very well for continuous speech
recognition.

However, these techniques treat only additive noise. It is difficult to
achieve adaptation for both additive noise and multiplicative
distortion at the same time, because nonlinear transformation occurs
between cepstral coefficients and the linear spectrum. To solve this
problem, we proposed a method that estimates additive noise and
multiplicative distortion by maximizing the likelihood of HMMs
[4][5]. We call it extended HMM composition.

In HMM composition, so far we have not used the variance of the
Oth order cepstrum as the theory describes, since using it in our
experiments degraded recognition accuracy. In this paper, we
describe how to incorporate power (Oth order of cepstrum
coefficients (cep0)) variance into HMM composition. In Section 2,
we describe the HMM composition method. In Section 3, we
describe extended HMM composition. In Section 4, we discuss how
to incorporate cep0 variance into HMM composition.

2. HMM COMPOSITION

The HMM composition is the same as PMC proposed by Gales and
Young. The basic concept is to make HMMs for noisy conditions
from speech HMMs and a noise HMM (Figure 1). Speech HMMs
are modeled from noise-free speech and the noise HMM is modeled
from environment noise. The structure of the resulting model is a
combination of the speech HMM and noise HMM. The main
difficulty in combining two models is calculating the Gaussian
distributions of output probabilities from the two source HMM
distributions: the noise HMM and the speech HMM. Since each
HMM is defined in the cepstrum domain, and speech and noise are
additive in the linear spectrum domain, the Gaussian distributions
defined in the cepstrum domain are transformed into log normal
distributions in the linear spectrum domain and convoluted and re-
transformed. This method is formulated as follows.

To deal with many random variables in the equations, the following




conventions are used. R represents source R in domain c, where ¢
={cep. Ig. lin}, R={S, N, X}. S, N and X are random variable
vectors of speech, noise, and noisy speech respectively. For
instance, Xy, is the random variable associated with noisy speech in
the linear spectrum. The corresponding Gaussian distribution is
N, 22ty

We assume that there is no correlation between the noise and speech
signals. Since the noise signal and speech signal are additive in the
linear domain, we get the equation:
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where T is the cosine transform, e is the function that calculates the
exponential of each vector component, and log is the function that
calculates the logarithm of each vector component. Now, we want to
find the distribution of X, when distributions of N, and
Sc,,, are defined as Gaussian distributions. Since the cosine
transform is a linear transform, the distribution after transformation
is still a Gaussian distribution; distributions of Sy (=IS,,,) and
Ny (=TIN_,,) become Gaussian distributions. Thus the mean and
covariance values of the distribution of S, (= I'S,,,)after cosine
transformation are easily calculated as follows.
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Thus the mean and covariance values of the distribution of
N (=IN,,,) are also calculated using the same formulations.

Since after the exponential transformation, the Gaussian distribution
is a log normal distribution, the distributions of Sin(= ch“l’ y and
Ny (= erN“"l’ ) are log normal distributions. Thus the mean and
covariance values of the distribution of Sin(= ersﬂ’}' yare

calculated as follows.

S,
o,k

pusll'" = exp(puslg + ). ©)

auvsh'ﬂ = puslin ﬂvsl!.n (exp(o‘uvslg ) - l) . (5)

Since x, (= eloeep 4 o TVeer y i the sum of  TSeep and (Weep | the
distribution of X, (= ¢"% +.¢™ee  is obtained by convoluting

the two distributions of (Seep and ™eep . However, it is difficult

to obtain a real distribution for X,,. If we assume that Xj;, can be

approximated to a log normal distribution, the distribution of

s - . L .
X, = log(e cep | MNeepy is 2 Gaussian distribution and its mean
and covariance can easily be obtained from the mean and covariance

of the distribution of ¢™eep 4 ¢™eep .

From this knowledge, the following equations are obtained.
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Here, t: transpose; u,v: parameter indices, where 0< u,v £ pand p+1
is number of coefficients in the spectrum domain.

3. EXTENDED HMM COMPOSITION

We extended HMM composition to deal with additive noise and
multiplicative distortion. We modeled speech signal in general
noisy conditions as shown in Figure 2. Here, almost all variables are
defined in the linear spectral domain, so the suffix of spectrum is
omitted in the following notations. Speech signal S is produced by
speech HMMs. Noise signal & is produced by a noise HMM. § and

- ~N

Figure 3: Converted model for producing noisy and distorted speech.




N are defined in the linear power spectral domain. S is first
multiplied by multiplicative distortion G corresponding to distortion
before noise is added. Then additive noise N is added to speech
signal GS. Since the S/N ratio in evaluation is different from that in
training, to control this factor, N is multiplied by coefficient k.
Finally, the speech signal is multiplied by multiplicative distortion
H corresponding to distortion after noise is added, for example
microphone line distortion, microphone distortion, etc. Using these
notations, the final noisy and distorted speech signal is X = H(GS +
kN) = HGS + kHN. By setting W= HG, we obtain X = WS + kHN
=W(S + kHN/W) , so the basic noisy speech model can be converted
into the model shown in Figure 3. We suppose that the variables W
and k are deterministic, not random. The HMM for HN can be
trained by using a signal without speech. The HMMs for § can be
made from noise-free data.

If k and W can be estimated, HMMs that generate X can be obtained.
The problem is how to estimate £ and W, and so we extended
ordinary HMM composition so that composed HMMs could
become a function of k and W. A set of phoneme HMMs producing
X is modeled by composing the xHN /W HMM, the § HMMs and
W. W and £ are then estimated by maximizing the trellis likelihood
score P(OIM(k,W)), where O ={x, x,, ..., x,} is a time sequence of
input vectors and M(k,W) is a set of composed phoneme models as
functions of k and W. To maximize P(OIM(k,W)), extended HMM
composition basically uses an iterative procedure. In each iteration,
the maximization process consists of both k£ and W estimation.

The value of & is estimated using the parallel model method, in
which several sets of models with different lcj’s are prepared. Using
these models, the likelihood scores, P(OIM(kJ,W)), are calculated for
all j's, and a set of models with maximum likelihood is selected. The
values of W is estimated using the EM algorithm.

Thus, our algorithm to find both & and W is as follows:
1. Initialize W.

2. Compose sets of HMMs, changing k; select the k that
gives the maximum value of P(OIM(k,W)).

3. Compose the set of HMMs in the area bounded by the
dotted line in Figure 3 with the fixed &/'W obtained in
step 2.

4. Estimate W outside the dotted line by using Sankar’s
cepstral bias estimation method.

5. Update &/W inside the dotted line using the newly
estimated W.

6. Repeat steps 2 to 5 until convergence is achieved.

Sankar’s method estimates cepstral bias by using the EM algorithm
[6}.

4. INCORPORATING POWER VARIANCE

We found that when we used cepO variance in the HMM
composition process, the recognition rates degraded significantly,
so until now, we have not used the variance of cep0 in HMM
composition or extended HMM composition processes. That is the
variance of cepQ was set to zero. The reason of this degradation
might be as follows. Equations (6) and (7) approximate a complex
distribution in the linear spectrum domain as a log normal
distribution. When the log normal distribution is approximated
using cepO variance, its approximation accuracy degrades, since
the variance of cep0 is much bigger than those of the other cepstra.

To avoid this problem, we approximate a complex distribution as
the sum of several log normal distributions. To do this, the
Gaussian distribution of cepO is quantized as shown in Figure 4.
Since we use diagonal Gaussian distributions in the cepstral
domain as output probability in HMMs, using these quantized
power values, a Gaussian distribution of cepstrum is divided into
several Gaussian distributions with different cep0 means. (In the
original HMM composition, variance of cep) was set to zero; i.e.,
the distribution was quantized only at the original cep0 mean
value.) The probability densities of cepQ at quantized points are
normalized so that their sum is 1.0. These values are used as
weights of the divided distributions. After quantization, extended
HMM composition is performed for each divided Gaussian
distribution.

Gaussian distribution of cep0.
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Quantization of cep0 distribution.

Figure 4: Approximation of cep0 distribution.




5. EXPERIMENTS

In this experiment, four-digit strings were recognized when the
number of digits was known. 9702 digit strings uttered by 70 male
speakers were used for training speaker-independent HMMs. A
whole-word HMM was prepared for each digit. The number of
states depends on the digits. The number of mixture components in
each state was set to four. Al6-order cepstrum and 16-order delta
cepstrum were used. The delta power was not used here.

Adaptation was performed in an unsupervised mode. First, a
universal speech HMM was made by using all the training speech
data. The universal speech HMM had one state with a 16-mixture
Gaussian distribution. S/N ratio and multiplicative distortion were
then estimated using the proposed algorithm from the speech HMM
and noise HMM. Finally, digit HMMs with additive noise and
multiplicative distortion were created from the noise HMM and the
digit HMMs using the estimated S/N ratio and multiplicative
distortion.

1785 digit strings uttered by 51 speakers were simultaneously
recorded using a boundary microphone. The characteristics of the
boundary microphone were very different from those of the
microphone used in training. Two types of noise, computer room
noise and car noise, were recorded using the same microphone in an
anechoic room. In the experiment, speech data were made by adding
this noise to clean speech data so that the S/N ratios became 12 and
18 dB.

Extended HMM compositions with and without cepQ variance were
compared.

Table 1 shows recognition results for extended HMM composition
with and without cepQ variance. n, shows how many points were
quantized on the cep0 distribution. We quantized the distribution of

cepO at three points (" -«fv..,“-— PR 2 ”/%xm ) and five
points ( y,* —quamx"! , y,‘w-\ﬂamxw y e, pter +\Jomx"’ .

gter +24Ja, % ) - The method using quantization at three points
improved the string recognition rate for both computer room noise
and car noise, compared with extended HMM composition.

We expected the method using quantization at five points to be more
accurate than that at three points, but its results were the almost same
or worse. This means that we do not need consider the power
distribution far from the mean value,

6. CONCLUSION

This paper described the improvement of extended HMM
composition by incorporating variance of the Oth order cepstrum. In
this method, the distribution of the Oth order cepstrum is quantized
and then HMM composition is performed. This method was
evaluated by a connected digit recognition experiment, in which

four-digit strings were recognized when the number of digits was
known. Two types of noise, computer room noise and car noise,
were used and noisy and distorted speech data were made by adding
these types of noise to speech data recorded using a boundary
microphone. These results confirmed that incorporating cep0
variance (power variance) into HMM composition increases
recognition accuracy.
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. noise in cmputer L.
noise noise in car
room
S/Nmtic | 12dB | 184B | 12dB | 184B
ithout
withoutcep0 | 200 | 84.6% | 90.1% | 96.0%
varnance
with  [ng=3| 61.4% | 86.2% | 91.1% | 96.1%
cep0
variance [ng=5| 61.8% | 85.9% | 90.6% | 95.7%

Table 1: Recognition results of extended HMM
composition with and without incorporating cep0 variance




