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Maximum Likelihood Estimation of K-Distribution
Parameters via the Expectation—-Maximization
Algorithm

William J. J. Roberts and Sadaoki Furui, Fellow, I[EEE

Abstract—Maximum likelihood (ML) estimates of K-distribu-
tion parameters are derived using the expectation maximization
(EM) approach. This approach demonstrates computational ad-
vantages compared with 2-D numerical maximization of the likeli-
hood function using a Nelder-Mead approachsFor large datasets,
the EM approach yields more accurate estimates than those of a
non-ML estimation technique.

Index Terms—EM algorithm, K-distribution parameter estima-
tion, maximum likelihood.

I. INTRODUCTION

HE K-distribution [1] is widely applied to radar signal pro-
T cessing problems and has particular applicability to syn-
thetic aperture radar (SAR) processing [2]. A common require-
ment is to estimate K-distribution parameters from data sam-
ples. Estimates with desirable properties are obtained by ap-
plying the ML criterion (3]. Unfortunately, with one exception,
analytic equations for ML estimates are not known. The excep-
tion was recently demonstrated by Iskander et al., who derive a
ML solution for one parameter of the K-distribution using the
generalized Bessel function K-distribution [4]. Prior to this, ML
estimates have been obtainable only by a two-dimensional (2-D)
numerical maximization of the likelihood function [5], [6].

As ML K-distribution parameter estimates are difficult to
obtain, research into K-distribution estimation has proposed
approximates and alternatives to ML estimation. Ragavan’s
method [7] equates the ratio of arithmetic and geometric
means of K-distributed data to its expected value. The resulting
equation can be solved by a numerical search to yield the
parameter estimates. In [8], an approximate asymptotic form
of the K-distribution is derived, and equations for the ML
estimates of this form are obtained. These equations are asymp-
totically equivalent to the equations for the ML estimates of a
gamma distribution. In [9]. 2 modified form of the equations
resulting from [8] is proposed based on the results of a neural
network analysis. In [10]. an approximation based on the
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gamma distribution is employed. and equations are obtained
via matching gamma and K-distribution moments. In [5] and
[6]. estimation using the method of moments is employed. In
all reported simulation studies that we know of (e.g., [5]-[10]),
the accuracy of 2-D numerical ML maximization techniques
is superior to that of alternative non-ML or approximate ML
techniques for large data sizes. However, ML estimates via 2-D
numerical maximization require large amounts of computation.

In this paper, we use the expectation maximization (EM) al-
gorithm [11] to derive ML estimates for the K-distribution. In
Section II, we derive an iterative solution with the guarantee that
the likelihood of estimates produced by successive iteration in-
creases until a stationary point is reached. Each iteration of the
EM algorithm requires the solution of equations similar to those
for ML gamma distribution parameter estimation, except in this
case, the data terms are weighted by functions of the previous
parameter estimates and the data. In Section III, we discuss im-
plementation and demonstrate the performance of our solution
on K-distributed data.

II. MAIN RESULT

We require the ML estimate X of the parameter set A of the
K-distribution from a sequence of independent and identically
distributed (iid) observations y = {y;, t =1, ..., T}, y, € R,
ie.,

A = arg maxp(y|A)

T .
arg max [ | p(ye|A) (1)

t=1

It

where p(y.|A) is the probability density function (pdf) of the
K-distribution. This pdf may be derived by considering a gen-
eralized Rayleigh distribution with a gamma-distributed mean
parameter. Other methods of deriving the distribution are pos-
sible (see, e.g., [6] and [12]). We may write

PlelA) = /O pyelwd)p(wA) duse @)

and we assume that the sequence w = {wy, t = 1. ... T} is

also iid. The K-distribution results when
2 N—1 .2
Yy xp( . Y ) 3)
LUy

p(yslwe) = m e
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t.c., the generalized Rayleigh distribution resulting from the
square root of the sum of the squares of N iid Gaussian scalar
random variables with zero mean and «, variance, and

T’ m;'_l

1'{ex)
i.c.. the gamma distribution with parameters {o, «}, where I'(-)

is the gamma function. Substituting (4) and (3) into (2) and per-
forming the integration using [ 13, p. 340. eq. 3.471(9)] yields

Pl A) = expl—auy) 4)

g ENIG2 N f2 Nt )2

pyeld) = TS

]{(,—;\,‘/‘_7(\/2—;'!/:)

%)
where AV, (+) is given by [ 13, p. 952, eq. (8.407)] and is known
as the modified Bessel function of the second kind of, order
1. Equation (5) is the K-distribution with\parameter set A =
{. er}. As in other studies, we do not consider here the estima-
tion of N as this parameter corresponds to the number of looks
in SAR applications and is generally known.

As there is no known closed-form solution to (1), we con-
sider the EM technique that results in a new estimate A of the
parameter sel. given a current estimate. The properties of the
EM algorithm guarantee that until a stationary point is reached,
this new estimate has greater likelihood than the current esti-
mate. The equations for the EM are derived by maximization of
the auxiliary function [11]

A= argax / plaey. A log ply. w|A) du (6)

o
where X is the current estimate. The convergence of the se-
quence of these parameter re-estimates is discussed in {14]. In
the Appendix, we derive the following equations for the maxi-
mizing values of ¢v and & of (6):

doxp(=W{(a})) =p {7)
I 1w
r'r_ = n ; Qi 8)
where
| —
:I-.Zﬁr!h
/‘ — t=1 . (9)

T 177
(H .‘h!ll)
1=1

is the ratio of the arithmetic and geometric means of weighted
data. () iy the digamma function [13. p. 943] defined as the
derivative of the log of the gamma function. and the weights «,
and ¢, are given by

Koo (V200)
V2a' K xpy oo (V20" )

log K, (V2a'y, );

(1)
b= Nj2—ar

(10

0y

1 J
), = 0x —_——
"= T T

where ' and «” are current estimates.
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Equations (7)—(11) constitute the iterative EM procedure for
the estimation of K-distribution parameters. The iterations may
be started with any suitable values of a’ and ¢’. The iterations
may be ceased once convergence criteria are satisfied.

Equations (7) and (8) are of the same form as the equations
for the ML estimates of a gamma distribution (see. e.g., [7, EQ.
(4a) and (b)]), where now, the data terms are multiplied by @ -
or g;. An explicit solution for ¢ is not obtainable directly from
(7). We used Newton's method to derive the following iterative
solution:

a exp{—C(w,)) - p

=0y, ~ 12
nt1 = exp(—P(w,)) — @, V() (12)
where
w, current value of «;
1 new value;
@¥’'()  trigamma function [15, p. 260]. _

An appropriate starting point of Newton's method is the the cur-
rent estimate a’. Once & has been obtained, an explicit value of
& is obtained directly from (8).

III. SIMULATION STUDIES

In this section, we detail a simulation of the EM K-distribu-
tion estimation scheme derived in Section II. We investigate the
performance of the EM scheme and compare it with 2-D numer-
ical ML estimation using the Nelder~Mead (NM) technique [ 16]
and the non-ML method due to Iskander, Zoubir, and Boashash
(IZB) [4].

A. Implementation of the EM Technique

The implementation was written in Matlab (7] using approx-
imations for the functions ¥(-). ¥'(-), and (8/0«)log Ko (-},
as these functions are not available as part of standard Matlab.
The function ¥(-) was implemented using [15, eqs. (6.3.18)
and (6.3.5)]. The ¥'(-) function was implemented using {15,
€qs. (6.4.2) and (6.4.6)]. The (9/d«) log Ko(-) function was
approximated using i

‘iK(\ () =~ Kopnlx)
da

with /o = 1072, The accuracy of the approximation of deriva-
tives in this manner depends on the smoothness of the functions
concerned. The iterations of the EM are halted once the differ-
ence between successive parameter estimates is less than 0.5%
or once the maximum number of iterations (300) is reached.

- K,,..;,(:I:)

2h (13)

B. Experiment and Resulis

The execution time of the EM technique and the accuracy
of its ¢v estimates were compared to those of the IZB and NM
approaches. The latter maximization was implemented by ‘the
fmins() function of [17]. The initial parameter values for both
the EM and NM methods were those produced by the IZB
method. ‘

Table I shows, for three values of T, the true « and o pa-
rameter values used to generate the data together with the mean
squared error (MSE) over 1000 trials of the o estimate obtained
by the EM scheme «g\ . the ¢v estimate via the NM routine
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TABLE |
MSEs FOR v (0 ESTIMATED viA EM ML), axa (a ESTIMATED
VIA NELDER-MEAD OUTIMIZATION). 11170, (0 ESTIMATED USING THE
METIOD OF ISKANDER ¢f al.). AveraGEs FOR T/ Tizu (RATIO OF
EM T0 IZB COMPUTATION TisEr AND Taat / Tizn (RATIO OF NM TO
1ZB Comrutarion TIME)

N =2 a=05no=10la=18|a=20la=25
a=10|0=20|0c=30|0=40)0=05.0
MSE g 0004 015 038 183 427
MSE away 0014 015 058 .183 427
T=20 MSEa;zu | 0016 016 .060 193 454
Terw/Tize 1.4 3.1 4.5 8.3 14.4
Tvs/Tize 4.3 2.3 8.8 10.6 16.3
MSE agp 0007 | 0071 027 082 199
MSE axar 0007 | 0071 027 .082 199
T =500 MSE wizy .0008 0074 028 087 223
Tes!/Tiza 22 39 53 10.2 / 175
TunlTizs 3.1 G.2 9.6 13.9 20.1
MSE aga 0004 | .0044 .018 039 123
MSE anar | .0004 | .0044 018 059 123
T=750 MSEa;za | .0005 | .0045 019 .060 134
Tem/Tizn 34 4.3 6.3 13.1 23.2
Tvm/Tizn 6.1 7.2 10.3 17.2 25.9

cexar. and the cv estimate obtained by the [ZB method «vjzp. A
comparison of the computation times is also given in Table I,
which shows the averages of the ratio EM to IZB computation
time 7gy/7izp and the ratio of the NM to IZB computation
time Ty /7izp. The computation times for the NM and EM
schemes did not include the time required to obtain the initial
parameter values using the 1ZB scheme.,

C. Discussion

For all experiments, we observed that the likelihood at each
iteration of the EM was greater than that at the previous itera-
tion. Thus, according to our experimental results, the approxi-
mations used in Section IlI-A did not negate the guarantee of
the EM technique to produce a sequence of estimates with in-
creasing likelihood.

The MSE of the v estimates over the 1000 trials of the EM
and NM were identical within the convergence tolerances of
the algorithms. These two techniques search for potentially
different points. The NM method attempts to find a maximal
point. whereas the EM algorithm will find a stationary point
only. The faci that the MSEs for the EM and NM were identical
demonstrates that the EM technique consistently located
maxima rather than other types of stationary points.

The number of iterations required for convergence of the EM
technique was related to the true parameter values. At low
values, the EM approach converged quickly, illustrated by its
comparable computational time compared with the noniterative
IZB approach. At higher values of ¢«. the EM approach was still
quicker than the NM approach but was much slower than the
1ZB method. For these experiments, the cv estimates of the EM
always had lower MSE than those of the IZB method. How-
ever, in experiments using smaller values of T not reported here,
the IZB method produced parameter estimates that were prac-
tically indistinguishable from those of the ML methods for sig-
nificantly reduced computation. Thus. we may conclude that
the EM approach is suitable for applications involving large
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amounts of data when the importance of highly accurate esti-
mates is worth the extra computation required.

APPENDIX
From (6). we require

A= arg max / p(wly. X') log p(y. w|A) dw

= Arg X / p(wly. A") log[p(w|A)p(y|w)] dw
T
= arg u,l;m; /; p(wly. A') log p(w,|A) dw

T oc
= urg ma.xz / plwelye. A log p(we|A) dw,.  (14)
Ao

Substituting (4) in (14), differentiating with respect to o and
«, and setting the result to zero yields

I 1 &[>
g = ZT— Z/ [)(?U[Iyg. /\I)'wt dw,
t=1"0

T
. L, 1 = '
V(&) =logo + 7 ;=1 [; p(wly:, A)logw, dw, (i6)

(15)

where ¥'(-) is the digamma function [13, p. 943]. Using [13, p.
340, eq. 3.471(9)], we have

o0 oc AI
/ p(welye, A )w, dw, = / ____p(yrlw:)p(tuzl )'lUg dw,
0 0 I’(?lzl’\ )

_ leN/?-u’ -1 ( \ QU’yt)
Vv ZU,A’N/‘_)_R/(\/ 20'%)

and using the relation [ logwf(w)dw = (8/8a) [ w* f(w)
dw|,=¢, we have

(17)

>
/ plw)yy, N logw, dw,
0

—()(;K(.(\/%r’y,)

Yt % a=N/2-a’

= log -
® Vo Kyxpa-o(V20'yr)

Using the definitions for the weights given in (10) and (11)
and substituting (17) and (18) into (15) and (16) yields (7) and
(8).

(18)
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