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SPEECH-RATE-VARIABLE HMM-BASED JAPANESE TTS SYSTEM

Koji Iwano, Masahiro Yamada, Taro Togawa, and Sadaoki Furui

Department of Computer Science, Tokyo Institute of Technology
{iwano,masahiro,tarot,furui}@furui.cs.titech.ac.jp

ABSTRACT

This paper proposes a new method for controlling phoneme dura-
tion according to arbitrary target speech rate in speech synthesis
(TTS, text-to-speech) systems. The proposed method first con-
structs three fundamental duration models at “fast”, “normal”, and
“slow” speech rates using Hayashi’s Quantification Theory (Type
1) based on real speech databases and creates a duration model
according to a target speech rate by interpolating the fundamental
models. Our TTS system uses an HMM-based synthesizer which
can achieve flexible prosody control. Various speech synthesized
by the proposed method are evaluated by subjective experiments at
four speech rates using pair comparison tests between the proposed
method and a rule-based method. The results show that the pro-
posed method achieves higher naturalness in synthesized speech
than the rule-based method.

1. INTRODUCTION

Quality of synthesized speech has recently improved significantly
and text-to-speech conversion systems (TTS systems) are now used
for many applications. However, most of them can only produce
reading-style speech and there is a strong demand for a more flex-
ible TTS systems that can produce a variety of speech styles to be
used in a wider scope of applications.

Prosody control is essential for achieving various styles in
speech synthesis. Speech rate control is one of the most impor-
tant and useful components in the prosody control. For example,
generating speech at slow speech rate for aged people and synthe-
sizing speech at fast speech rate for expressing emotions, such as
“happiness” or “anger” will become important in the near future.
This paper proposes a new method of phoneme duration control
according to a given speech rate for synthesizing natural speech at
various speech rates.

Most of the present speech synthesizers are based on sub-word
unit concatenation methods and they usually use the TD-PSOLA
technique [1] for prosody control. Although the TD-PSOLA is a
simple and effective method for modifying the prosody, including
fundamental frequency (F0) contours and phoneme duration, it is
vulnerable to spectral and phase distortion. On the other hand, syn-
thesizers based on a phonetic vocoder method can control prosody
without increasing distortion.

For this reason, our TTS system is based on a phonetic vocoder
method using HMM [2, 3]. In this method, phoneme HMMs are
used to produce a time function of cepstral parameters. Phoneme
duration is modeled and controlled using a statistical method, specif-
ically a categorical multiple regression method called Hayashi’s
Quantification Theory (Type 1) [4]”. For the statistical modeling,
we create a speech database consisting of the utterances spoken
at three kinds of speech rate: “fast”, “normal”, and “slow”. A

phoneme duration model for each speech rate is trained by the cat-
egorical multiple regression method and a duration model for an
arbitrary speech rate is created by interpolating the three models.

In the first part of the paper, we investigate the most impor-
tant factors for high-quality phoneme duration modeling based on
the Quantification Theory (Type 1) and determine the input fac-
tors for duration control. The latter part of the paper describes our
phoneme duration control method and results of subjective exper-
iments on the naturalness of the synthesized speech.

2. OUTLINE OF HMM-BASED TTS SYSTEM

Outline of our HMM-based Japanese TTS systems is shown in Fig-
ure 1. Japanese text, written with a mixture of Chinese and Kana
characters, is given to the system and processed by a text analyzer
from the “FLUET” library provided by NTT Cyber Space Labo-
ratories [5]. In the text analysis process, the Japanese text is seg-
mented into “prosodic word [6]” units. The prosodic word unit is a
basic Japanese unit with one accent component, corresponding to
a word or a word chunk with one or multiple content word(s) and
function word(s). For each prosodic unit, the analyzer predicts a
phoneme sequence, an “accent type”, and a “pitch connection pat-
tern [5]” from the current to the following unit. Each prosodic unit
can be modeled by one of the basic accent types. In the Tokyo di-
alect of Japanese, an n-mora prosodic word is uttered with one of
the n + 1 possible accent types denoted as type i (i = 0, · · · , n)
accent [6]. The type 0 accent has no apparent downfall. The other
type i accents have rapid downfall in the F0 contour at the end of
the ith mora (syllable). Each prosodic unit boundary has a pitch
connection pattern which represents the strength of prosodic con-
nection indicated by one of the six levels; the weakest connection
being assigned to long pauses.

In the prosody generation part, both phoneme duration and
F0 contour of the target sentence are determined based on the se-
quences of the accent types and the phonemes, using the Quantifi-
cation Theory (Type 1). The details are described in section 3.

The triphone HMMs in Figure 1 are trained using the 50 di-
mensional feature vectors consisting of 25 mel-cepstral coefficients
[7] including the zero-th coefficient and their delta coefficients, ex-
tracted from speech signal using a 25.6ms-length Hamming win-
dow shifted at every 5ms. Each triphone HMM has five states
and four mixtures in each state. The total number of states is ap-
proximately 3,000. In the synthesis process, a sentence HMM is
constructed by concatenating the triphone HMMs according to the
phoneme sequence. A mel-cepstrum vector sequence is obtained
from the concatenated HMMs based on the maximum likelihood
criterion [8].

The cepstral sequence is then converted into a sequence of
MLSA (Mel Log Spectral Approximation) filters [9] and the target
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Fig. 1. HMM-based text-to-speech system.

speech is synthesized by passing a voice source waveform through
the filters. Pulses and white noises are used as the voice source
waveform in voiced and unvoiced parts, respectively.

3. PROSODY GENERATION USING THE
QUANTIFICATION THEORY (TYPE 1)

In order to achieve high-quality prosody control in Japanese speech
synthesis, several F0 contour control methods [10, 11, 12] and du-
ration control methods [10, 13] using the Quantification Theory
(Type 1) [4] have already been proposed. Our synthesis method
uses statistical prosody control based on the quantification theory.

3.1. Quantification Theory (Type 1)

The Quantification Theory (Type 1) formulates the relationship be-
tween categorical and numerical values as follows:

ŷi = ȳ +
X

f

X
c

xfcδfc(i) (i = 1, · · · , N) (1)

where ŷi is the predicted value of the ith sample, ȳ is the mean
value over all samples, and N is the total number of samples.
δfc(i) is the characteristic function:

δfc(i) =

8<
:

1 : if the ith sample belongs to
the category c of the factor f

0 : otherwise
(2)

xfc is the score of the factor f in the category c, which can be com-
puted by minimizing the summation of squared errors

P
i(ŷi −

yi)
2 using a conventional linear regression model.

3.2. F0 contour generation

In the prosody generation stage, the F0 values are predicted, mora
by mora, based on the Quantification Theory (Type 1) [14]. The
F0 contour for a sentence is generated by linearly interpolating the
moraic values.

In [14], we investigated important factors for F0 control using
the quantification theory. As a result of prediction error estimation
and subjective experiments, it has been confirmed that the best F0

Table 1. Factors for generating phoneme duration using the Quan-
tification Theory (Type 1). The number in () indicates the number
of categories of each factor.

No. factors
1 Number of mora in Wk (9)
2/3 Number of mora before / after Wk within P (9)
4 Accent type of prosodic unit Wk (7)
5/6 Accent type of prosodic unit Wk−1 / Wk+1 (7)
7 Number of prosodic units with accent types higher

than 1 before Wk within P (4)
8 Pitch connection pattern at the boundary

between Wk−1 and Wk (4)
9 Pitch connection pattern at the boundary

between Wk and Wk+1 (4)
10 Pitch connection pattern at the boundary

between Wk−2 and Wk−1 (5)
11 Pitch connection pattern at the boundary

between Wk+1 and Wk+2 (5)
12 Pitch connection pattern at the boundary

between Wk−3 and Wk−2 (5)
13 Pitch connection pattern at the boundary

between Wk+2 and Wk+3 (5)
14/15 Pause length before / after Wk (9)
16 Kind of phoneme Oi

(1∼9 : depending on the phoneme class of Oi)
17/18 Kind of phoneme Oi−1 / Oi+1

(18∼29 : depending on the kind of phoneme Oi)
19/20 Kind of phoneme Oi−2 / Oi+2

(18∼29 : depending on the kind of phoneme Oi)
21 j (9)

contour is obtained when 21 factors are taken into consideration.
These 21 factors are related to the phoneme sequence, the accent
types of prosodic units, and the pitch connection patterns.

3.3. Phoneme duration generation

Phonemes are clustered into 13 classes based on the place of ar-
ticulation and class-dependent phoneme duration models are con-
structed. In order to train the duration models, phoneme bound-
aries in the training corpus are estimated by the Viterbi align-
ment technique, using the HMMs for the synthesis filter. This
means that both the duration models and the HMMs are trained
using common units produced by the maximum likelihood crite-
rion. This is very important for avoiding the deterioration of the
synthesized speech quality due to mismatches between the units
during analysis and synthesis.

Effective factors for predicting phoneme duration are selected
by the estimation of prediction error and the results of subjective
experiments. They are selected from 21 factors that are similar to
those described in section 3.2. Table 1 shows the 21 factors, where
the ith phoneme in the sentence is the estimation target phoneme
Oi and belongs to the mora Mj . Mj is the jth mora in the prosodic
unit Wk. Wk is the kth unit in the sentence and it belongs to the
intonational phrase (breath group) P .

A database of 503 phonetically balanced sentence utterances
from a male speaker “MHT” which is a part of the ATR continuous
speech corpus are used in our experiments. The triphone HMMs
for creating the MLSA filter are trained using the whole 503 utter-
ances. On the other hand, the phoneme duration model is trained



Fig. 2. Relationship between the number of factors selected by
the greedy algorithm and the average RMS estimation error of
phoneme duration.

using 493 utterances and evaluated using the remaining 10 utter-
ances.

The duration model training is performed as follows. First, the
“greedy algorithm” is used to select important factors based on the
root-mean-square (RMS) estimation error:

1. set fn ∈ C, F = φ.
where fn indicates one of the 21 factors (n = 1, · · · , 21),
C is the initial set of factors, and F is the set of selected
factors.

2. select fn from C which minimizes the estimation error when
the phoneme duration model is trained using F + {fn}.

3. remove fn from C and add fn to F .

4. go back to 2 until C = φ.

As the result of the experiment, the following order of impor-
tance has been obtained: 18, 17, 20, 16, 19, 21, 15, 14, 1, 8,
4, 3, 5, 2, 9, 6, 13, 10, 12, 11, 7. Figure 2 shows the rela-
tionship between the number of most important factors used in the
modeling and the averaged RMS estimation error of the phoneme
duration. The best result is obtained when the top 10 factors are
used. As a supplementary experiment, the “stingy algorithm” has
also been tried and exactly the same results have been obtained.

Subjective experiments have been conducted using the phoneme
duration models with the top 1, 2, 3, 5, or 10 factors obtained by
the quantification theory. Ten different sentence utterances have
been synthesized for evaluation using the five duration models.
Pair comparison tests between all the pairs of duration models have
been conducted by 10 subjects. Each subject listened to three pairs
of synthesized utterances selected randomly from the 10 sentences
in each comparison condition and evaluated them in terms of nat-
uralness. Figure 3 shows the preference scores. Although the best
score is shown when using the top 5 factors, hypothesis testing
based on the binomial distribution with the significance level of p-
value ≤ 0.05 indicates that there is no significant difference among
the four duration control methods with the top 2, 3, 5, or 10 factors.

4. SPEECH-RATE VARIABLE SYNTHESIS METHOD

This section proposes a method in which the phoneme duration can
be controlled according to a speech rate given by a user. In order to
implement this method, 1) three kinds of speech data with “fast”,
“normal”, and “slow” speech rates are recorded, 2) a phoneme

Fig. 3. Preference scores of synthesized speech as a function of
the number of factors in the duration control method selected by
the Quantification Theory (Type 1).

duration model is trained by the categorical multiple regression
method for each speech rate, and 3) a duration model for arbitrary
speech rate is made by interpolating the three models.

4.1. Database

Three speech databases at “fast”, “normal”, and “slow” speech
rate, respectively, by a single male speaker “MTT” have been
recorded. The normal speed database consists of 503 utterances
reading the text used in the ATR continuous speech corpus. This
database is also used for training triphone HMMs. The fast and
slow databases respectively consist of 300 utterances reading a
subset of the 503 sentences. The speaker was requested to read
sentences as fast/slow as possible, keeping high intelligibility and
naturalness. The fast and slow speed phoneme duration models
have been trained using these 300 utterance database. Although
the normal speed database has 503 utterances, the same 300 sen-
tences have been used to make the normal speed duration model to
maintain homogeneity.

In order to make a duration model at arbitrary speech rate,
average mora length ML at speech rate s is defined as follows:

ML(s) =
Total duration except pause periods in the data

Total number of mora in the data
(3)

The actual ML values, when s is fast, normal, and slow, are as
follows:

ML(fast) = 104.5 [ms]
ML(normal) = 149.6 [ms]
ML(slow) = 307.6 [ms]

4.2. Phoneme duration model generated by interpolation

The top five factors extracted by the Quantification Theory (Type
1), {16, 17, 18, 19, 20}, described in section 3.3, have been
selected and three duration models with each speech rate have been
trained. These five factors indicate the kind of five consecutive
phonemes: two previous phonemes, the target phoneme, and two
succeeding phonemes.

The duration model of the target speech rate st is obtained by



linearly interpolating the model parameter xfc as follows:

xfc(st) =

8>>><
>>>:

xfc(normal)(1 − R(st)
R(slow)

)

+ xfc(slow) R(st)
R(slow)

(R(st) ≥ 0)

xfc(normal)(1 − R(st)
R(fast)

)

+ xfc(fast)
R(st)

R(fast)
(R(st) < 0)

(4)

where xfc(s) indicates the score xfc at speech rate s and R(s) is
a time-stretch ratio from the normal speech rate to the speech rate
s. R(s) is defined by the following equation:

R(s) =
logML(s) − logML(normal)

log 2
(5)

R(s) values at the speech rates of the recorded databases are as
follows:

R(fast) = −0.52
R(normal) = 0
R(slow) = 1.04

4.3. Experiments

In order to evaluate the effectiveness of the interpolation, two tar-
get speech rates have been decided; “slightly fast” which is a mid-
dle speech rate between “fast” and “normal”, and “slightly slow”
which is a middle between “slow” and “normal”. Therefore
R(slightly fast) = −0.26 and R(slightly slow) = 0.52.

A rule-based method based on empirical knowledge has been
made to compare with the proposed interpolation-based method.
In the rule-based method, after computing each phoneme duration
in a target sentence based on the duration model of the normal
speech rate,

• the duration of vowels is multiplied by r,

• the duration of syllabic nasal(/N/) is multiplied by r
2

, and

• the duration of other phonemes are maintained.

The coefficient r has been determined in each sentence so that
both the proposed and rule-based methods produce a sentence of
the same duration.

Subjective experiments were conducted using a pair compari-
son test between the proposed method and the rule-based method
by 15 subjects. Utterances at four kinds of the speech rate: “fast”,
“slightly fast”, “slightly slow”, and “slow” were used. In the “fast”
and “slow” speech rate conditions, the duration models were not
interpolated. Each subject listened to pairs of three synthesized
speech selected randomly from a set of 24 sentences at each speech
rate and evaluated them in terms of naturalness. The text of the
24 synthesized speech were different from those used in training.
Both methods used the same F0 control model described in section
3.2 and the same pause length at every phrase boundary.

4.4. Experimental results

Figure 4 shows the preference scores of synthesized speech for
the proposed method and the rule-based method at each speech
rate. The proposed method shows better results than the rule-based
method in all the experiments. The total preference score of our
method is 65%. The hypothesis testing about this score indicates
that our method is superior to the rule-based method with the sig-
nificance level of p-value ≤ 0.05.

Fig. 4. Preference scores of synthesized speech by the proposed
method to the rule-based method at various speech rate.

5. CONCLUSIONS

This paper has proposed a new speech synthesis method which can
control phoneme duration according to arbitrary target speech rate.
The phoneme duration control consists of two steps: 1) construct-
ing three duration models at “fast”, “normal”, and “slow” speech
rates, using Hayashi’s Quantification Theory (Type 1) and 2) in-
terpolating these models to create a model according to the target
speech rate.

An analysis of the most effective factors for phoneme duration
modeling indicates that the kinds of the estimation target phonemes
and surrounding phonemes are especially important.

The proposed phoneme duration control method has been eval-
uated by subjective experiments at various speech rates using pair
comparison tests between the proposed method and a rule-based
method. The results show that the speech synthesized by the pro-
posed method has significantly higher naturalness than the rule-
based method.

Our future works include controlling the spectral parameters
and the F0 contour according to a target speech rate.
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