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Abstract 

 
This paper uses the AURORA2 task to investigate the 
performance of our proposed tree-structured piece-
wise-linear transformation (PLT) noise adaptation.  In 
our proposed method, an HMM that best matches the 
input speech is selected based on the likelihood maximi-
zation criterion by tracing a tree structured HMM space 
that is prepared in the training step, and the selected 
HMM is further adapted by linear transformation. Ex-
perimental results show that our method achieves a sig-
nificant improvement for the AURORA2 database. 
 

1. Introduction 

 
The performance level of current speech recognition sys-
tems degrades significantly when applied to real world 
systems.  With the increase of real world applications 
such as dialogue systems and transcription systems, the 
demand for robust speech recognition systems is becom-
ing critical. To compare the performance of different 
algorithms, the AURORA working group that belongs to 
the technical body STQ (Speech processing, Transmis-
sion and Quality aspects) as an ETSI standardization 
activity has prepared a database for evaluation.  The 
main activity is to develop a front-end feature that will 
be more robust against noise for DSR (Distributed 
Speech Recognition).  Many researchers have used the 
AURORA database to evaluate their feature-processing 
techniques, e.g. [1,2].  

One effective approach to robust speech recognition 
is model adaptation; the acoustic models are adapted to 
the noise condition [3, 4, 5].  Model adaptation methods 

have an advantage in that these methods can adapt not 
only expected values but also distribution functions. 
Model adaptation methods, such as MLLR and MAP, 
adapt the observation probabilities of Gaussian mixture 
components according to the phone list yielded by input 
speech recognition.  Although model adaptation meth-
ods generally need two passes, the first pass for phoneme 
segmentation and the second pass for re-recognition us-
ing adapted models, they have an advantage in that they 
can achieve phoneme dependent adaptation, which is 
impossible with feature level compensa-
tion/normalization methods. 

Sasou et al. have proposed a method which pro-
duces, on-line, an extended acoustic model by combining 
a mismatch model with a clean acoustic model trained 
using only clean speech data [6]. The mismatch model is 
modeled by time-varying population parameters using a 
Gaussian Mixture Model (GMM) and a Gain-Adapted 
Hidden Markov Model (GA-HMM) decomposition 
method.  This method was confirmed to offer signifi-
cantly improved performance on the AURORA2 data-
base.  However, to estimate the GMM, this method 
needs non-speech frames that are usually detected by a 
speech/non-speech detector module. The performance 
largely depends on the result of speech/non-speech de-
tection (SND) and it is inapplicable when the  number 
of detected non-speech frames is insufficient. Another 
problem is the huge computational cost of performing 
3-dimensional Viterbi decoding in the decomposition 
process. 

We have recently proposed the use of tree-structured 
piecewise linear-transformation (PLT)-based adaptation 
[7].  PLT is performed in two steps: noisy speech HMM 



 

 

selection from tree-structured noisy HMM and linear 
transformation of the selected HMM.  Both processes 
use the likelihood maximization criterion.  This method 
has several advantages; it is unnecessary to use SND for 
estimating noise, since it does not need any knowledge 
about the input noise, and also the computational cost is 
low.  The proposed method has been tested in a large 
vocabulary speech recognition system and shown to  
achieve better performance than either the MLLR or 
PMC method [8]. 

Most researchers have reported combining front-end 
feature processing and model adaptation methods and 
AURORA2 database testing [9,10,11].  Our proposed 
method offers a simple and effective method that can be 
combined with front-end feature processing methods.  
This paper investigates the performance of our proposed 
method on the AURORA2 task.  We first briefly explain 
the method, and then report experiments. The paper con-
cludes with a general discussion and issues related to 
future research. 

 
 

2. PLT-based Noise Adaptation Using 
Tree-structured Noise-adapted HMM  

 
Noise-added speech spectra vary as a function of both 
noise spectra and SNR.  In our proposed method, a 
wide variety of noise data are collected and a large num-
ber of noisy speech (noise-added speech) data are created 
by adding each noise signal to a large set of clean speech 
utterances to recreate several SNR conditions.  The 
noisy speech data with all the combinations of noise and 
SNR conditions are classified into a tree structure.  As it 
is difficult to cluster noisy speech data directly, noisy 
speech GMMs for all the conditions are made and used 
for clustering. The noisy speech data set corresponding 
to each cluster (node in the tree) is used to construct a 
noisy speech HMM for recognition. While the model 
located in the root is trained by all-noise added speech at 
all SNR conditions, models located in the leaves are 
trained by single-noise added speech at a single SNR 
condition.   

In the recognition phase, the noise-cluster HMM 
that best fits the input speech is selected by tracing this 
tree from the top (root).  First, the likelihood value av-
eraged over the test utterance length using the root HMM 
is calculated.  The likelihood values are then calculated 
using the HMMs of its children nodes.  The model that 
yields the largest likelihood value among these models is 
selected.  If one HMM of the children nodes yields the 

largest likelihood, it is selected and the search is contin-
ued in the same manner.  If the parent model yields the 
largest likelihood, the model is selected as the best model 
and the search is stopped.  The selected HMM model is 
further converted to reduce mismatches with the input 
speech by the MLLR-based unsupervised adaptation 
method.  Figure 1 shows a flow diagram of the pro-
posed method. 

3. Experiments  

3.1 Task 

The performance of the proposed method is evaluated on 
the AURORA2 [12] speaker independent connected digit 
recognition task, i.e. the TIdigit database is used.  This 
contains the recordings of male and female US-American 
adults speaking isolated digits and sequences of up to 7 
digits.  

In the AURORA2 evaluation, two training modes 

T
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are considered: training on clean data and 
multi-condition training on noisy data.  “Clean” data 
corresponds to the TIdigit training data filtered with a 
G712 characteristic.  “Noisy” data corresponds to the 
TIdigit training data filtered with a G712 characteristic 
and contaminated by artificially added noise at several 
SNR conditions.  In our experiment, we evaluate the 
performance using the “Clean” training condition. 

In the AURORA2 evaluation, three different sets of 
speech data are subjected to recognition. 

 Set “A” consists of TIdigits test data filtered with a 
G712 characteristic and contaminated by artificially 
added noise (subway, babble, car, and exhibition 
noises) at several SNRs. 

 Set “B” consists of TIdigits test data filtered with a 
G712 characteristic and contaminated by artificially 
added noise (restaurant, street, airport, and train sta-
tion noises) at several SNRs. 

 Set “C” consists of TIdigits test data filtered with a 
MIRS characteristic and contaminated by artifi-
cially added noise (subway and street noises) at 
several SNRs. 

Since the intention of test set C is the investigation 
of a different frequency characteristic (MIRS instead of 
G712), we evaluate the performance on A and B sets.  

3.2 Acoustic Models 

The digits are modeled by whole word HMMs with the 
following parameters: 

 16 states per word  
 simple left-to-right models without skips over states 
 mixture of 3 Gaussians per state 

A vector size of 39 is defined by using 12 cepstral 
coefficients (without the zeroth coefficient) and the loga-
rithmic frame energy plus the corresponding delta and 
acceleration coefficients.  Two pause models are de-
fined.  The first one, called “sil”, consists of 3 states 
and models the pauses before and after the utterances.  
A mixture of 6 Gaussians models each state. The second 
pause model, called “sp”, is used to model pauses be-
tween words.  It consists of a single state, which is tied 
to the middle state of the first pause model.  The train-
ing is performed in several steps by applying the 
Baum-Welch re-estimation scheme. 

3.3 Noise Data for Noise Clustering 

90 kinds of noises collected by NTT-AT (NTT Advance 
Technology) were used for noise clustering [13].  Noisy 

speech samples were made at several SNR values (-5dB, 
0dB, 5dB, 10dB, 15dB, 20dB) and noisy speech GMM 
(64 Gaussian mixture) was trained for each noisy speech 
sample using the Baum-Welch algorithm.  Noisy speech 
GMMs were then clustered based on the likelihood ma-
trix in which each term was calculated from a pair of 
noise GMMs. 
   

3.4 Experimental Results 

Recognition experiments were performed to evaluate our 
method.  The best matching noise-adapted HMM was 
selected from the tree and then transformed by MLLR.  
In the experiments, instantaneous MLLR adaptation was 
carried out.  One sentence for testing was used for both 
HMM selection and MLLR adaptation.    

Table 1 shows the resulting word accuracy.  These 
results show that the proposed method improved the 
performance significantly; 80.83% and 81.91% averaged 
over 4 noises and 5 SNR conditions (20, 15, 10, 5, 0dB) 
were achieved for sets A and B, respectively.  They 
correspond to reductions in the relative error rate of 
50.40% and 59.12%, respectively.  These results are 
equivalent to or better than the best performances 
achieved by model adaptation methods reported so far in 
the framework of AURORA2 evaluations. 

 

4. Conclusion 

This paper has investigated our proposed tree-structured 
piecewise linear-transformation (PLT)-based noise adap-
tation using the AURORA2 database.  This method 
consists of two parts: best matching noisy speech HMM 
selection and linear transformation of the selected HMM. 
Both processes are based on the likelihood maximization 
criterion.  Experimental results show that the proposed 
method improved performance significantly.  

The proposed method has several advantages com-
pared to other recently investigated methods, such as 
HMM decomposition and spectral subtraction.  That is, 
it is unnecessary to use Speech/Non-speech Detection 
(SND) for estimating noise, since it does not need any 
knowledge about the input noise.  In addition, this 
method needs a relatively small amount of computation. 

Future research topics include combining it with 
front-end processing techniques to further improve its 
performance. 
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Table 1: Result for clean training multi-condition testing

 

Cleaning training, multicondition testing - Results 

A B 

 Subway Babble Car Exhibition Average Restaurant Street Airport Station Average

Clean 98.96 99.00 99.20 99.24 99.10 98.98 99.00 99.02 99.34 99.09 

20 dB 96.87 98.00 98.12 96.32 97.33 97.14 97.52 97.97 97.12 97.44 

15 dB 95.18 95.70 97.52 94.34 95.69 93.92 96.22 96.65 94.90 95.42 

10 dB 89.50 90.71 95.07 86.67 90.49 85.02 93.04 93.42 90.88 90.59 

5 dB 77.67 74.02 86.43 69.57 76.92 67.54 83.12 81.56 79.84 78.02 

0 dB 47.08 45.87 48.18 33.73 43.72 41.06 51.23 54.75 45.33 48.09 

-5dB 35.50 35.74 35.61 28.79 33.91 32.47 44.10 47.23 40.23 41.01 

Average 81.26 80.86 85.06 76.13 80.83 76.94 84.23 84.87 81.61 81.91 
Relative performance 

A B 

 Subway Babble Car Exhibition Average Restaurant Street Airport Station Average

Clean 2.80% 0.00% 23.08% 5.00% 7.72% 4.67% 0.00% 5.77% 17.50% 6.99% 

20 dB -6.10% 79.70% 27.41% -1.94% 24.77% 71.43% 41.78% 78.31% 45.45% 59.24%

15 dB 25.96% 83.61% 75.10% 28.89% 53.39% 74.41% 67.27% 85.43% 68.81% 73.98%

10 dB 50.66% 81.63% 85.06% 45.23% 65.64% 66.88% 78.84% 85.74% 77.03% 77.12%

5 dB 53.32% 64.50% 79.41% 44.84% 60.52% 52.95% 72.58% 73.53% 72.03% 67.77%

0 dB 28.48% 40.33% 39.42% 19.13% 31.84% 33.81% 40.64% 47.13% 38.18% 39.94%

-5dB 27.38% 34.72% 28.94% 21.23% 28.07% 30.04% 37.57% 42.50% 34.71% 36.21%

Average 38.59% 61.81% 62.09% 31.01% 50.40% 51.35% 59.01% 67.64% 58.56% 59.12%


