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Abstract

This paper proposes a noise-robust speaker verification method
augmented by fundamental frequency (F0). The paper first de-
scribes a noise-robust F0 extraction method using the Hough
transform. Then, it proposes a robust speaker verification
method using multi-stream HMMs which fuse the extracted F0

and cepstral features. Experiments are conducted using four-
connected-digit utterances of Japanese by 37 male speakers
recorded at five sessions over a half year period. The utter-
ances are contaminated with white noise at various SNR lev-
els. Experimental results show that the F0 features improve the
verification performance in all SNR conditions.

1. Introduction
In order to exploit high-performance speaker recognition sys-
tems, various methods using fundamental frequency (F0)
in combination with spectral/cepstral features have been
proposed[1-9]. Since F0 features are less sensitive to chan-
nel distortions or additive noise than spectral/cepstral features,
they are expected to be useful for increasing the robustness of
speaker recognition. [2] proposed a robust speaker recognition
method using F0 features to cope with the effect of handset
variation on telephone speech. [4] showed that F0 features in-
creased robustness of VQ-based speaker identification against
additive noise. However, F0 features have not been fully ex-
ploited for increasing noise-robustness in speaker verification.

In this paper, we propose a noise-robust HMM-based
speaker verification method using F0 features. In our previ-
ous work on noise-robust speech recognition[10], multi-stream
HMMs were used for fusing F0 and cepstral features, and the
Hough transform[11], one robust image processing technique,
was used for reliably extracting F0 values. Since this method
was effective for improving the speech recognition performance
in various kinds of noise and SNR conditions, we have applied
the same strategy to speaker verification as reported in this pa-
per.

This paper is organized as follows: Section 2 explains a ro-
bust F0 extraction method using the Hough transform. In Sec-
tion 3, our noise robust speaker verification method using multi-
stream HMMs is explained. Experimental results are reported
in Section 4, and Section 5 concludes this paper.

2. Noise-Robust F0 Extraction Using the
Hough Transform

2.1. Hough transform

The Hough transform is a technique to robustly extract para-
metric patterns, such as lines, circles, and ellipses, from a noisy
image[11].

This paper uses the Hough transform method to extract lin-

ear transitional patterns of F0 values. The method for extract-
ing a significant line from an image on the x–y plane can be
formulated as follows. Suppose the image consists of n pixels
at (xi, yi) (i = 1, · · · , n). Every pixel on the x–y plane is
transformed to a line on them–c plane as

c = −xim + yi (i = 1, · · · , n) (1)

Brightness values of pixels on the x–y plane are accumu-
lated at every point on the line. This process is called “voting”
to them–c plane. After voting of all pixels has been completed,
the maximum accumulated voting value on them–c plane is de-
tected, and the peak point (m, c) is transformed to a line on the
x–y plane by the following equation:

y = mx + c (2)

2.2. F0 extraction using the Hough transform

Although F0 contours have temporal continuity in the voiced
period, cepstral peaks which have been widely used to extract
F0 values often cause errors, including half pitch, double pitch
and drop outs, due to noise effects. To take advantage of the
continuity, the Hough transform is applied to time-cepstrum im-
ages of noisy speech.

Speech waveforms are sampled at 16kHz and transformed
to 256 dimensional cepstra. A 32ms-long Hamming window
is used to extract frames every 10ms. To the time-cepstrum
image, a nine-frame moving window is applied at every frame
interval to extract an image for line information detection. The
time-cepstrum image is used as the pixel brightness image for
the Hough transform. An F0 value is obtained from a cepstrum
index of the center point of the detected line. Since the moving
window has nine frames, the time continuity for 90ms is taken
into account in this method.

3. Noise-Robust Speaker Verification Using
Multi-Stream HMMs

3.1. Japanese connected digit speech

The proposed method was evaluated using four-connected-digit
speech in Japanese. In Japanese connected digit speech, two
consecutive digits usually make one prosodic phrase. Figure
1 shows an example of an F0 contour of four-connected-digit
speech. The first two digits make the first prosodic phrase, and
the latter two digits make the second prosodic phrase. The tran-
sition of F0 is represented by CV syllabic units, and each CV
syllable can be prosodically labeled as a “rising” or “falling” F0

part.

3.2. Integration of segmental and prosodic features

Each segmental feature vector has 25 elements consisting of
12 MFCC, their deltas, and the delta log energy. The window
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Figure 1: An example of F0 contour of four connected digit
speech in Japanese.

length is 25ms and the frame interval is 10ms. Cepstral mean
subtraction (CMS) is applied to each utterance.

Two kinds of prosodic features are extracted; log F0 and
∆ log F0. Prosodic feature vectors consist of both or either of
the two features. The segmental and prosodic feature vectors are
combined for each frame to build a segmental-prosodic feature
vector.

3.3. Multi-stream syllable HMMs

3.3.1. Basic structure of syllable HMMs

Since timing of the change of F0 transitions, such as “rising”
and “falling”, is highly related to that of CV syllable transitions,
segmental and prosodic features are integrated in our method
using syllabic unit HMMs.

The integrated syllable HMM denoted by “SP-HMM
(Segmental-Prosodic HMM)” is modeled by taking both the
context and the F0 transitions into account. Each Japanese digit
uttered continuously with other digits can be modeled by a con-
catenation of two syllables (morae). Even “2” (/ni/) and “5”
(/go/) can be modeled by two syllables, since their final vowel
is usually lengthened as /ni:/ and /go:/. The context of each
syllable is considered only within each digit in our experiment.
Therefore, the SP-HMM can be denoted by either a left-context
dependent syllable “LC-SYL,PM” or a right-context dependent
syllable “SYL+RC,PM”, where “PM” indicates an F0 transition
pattern which is either rising (U) or falling(D). For example, the
first syllable /i/ of “1” (/ichi/) which has rising F0 transition
is denoted as “i+chi,U”. Each SP-HMM has a standard left-
to-right topology with n × 3 states, where n is the number of
phonemes in the syllable.

3.3.2. Multi-stream modeling

SP-HMMs are modeled as multi-stream HMMs. In recognition,
the probability bj(�SP ) of generating segmental-prosodic ob-
servation �SP at state j is calculated by:

bj(�SP ) = bj(�S)λS · bj(�P )λP (3)

where bj(�S) is the probability of generating segmental fea-
ture vectors �S , and bj(�P ) is the probability of generating
prosodic feature vectors �P . λS and λP are weighting factors
for the segmental stream and the prosodic stream, respectively.
They are constrained by λS + λP = 1 (0 ≤ λS , λP ≤ 1).

3.3.3. Building SP-HMMs

Syllable HMMs for segmental and prosodic feature vectors are
separately made and combined to build SP-HMMs using a tied-
mixture technique as follows:

1. “S-HMMs (Segmental HMMs)” are trained by segmen-
tal features only. They can be denoted by either “LC-
SYL,*” or “SYL+RC,*”. Here, “*” (wild card) means
that HMMs are built without considering the F0 transi-
tions, “U” and “D”. The total number of S-HMM states
is the same as the number of SP-HMM states.

2. Training utterances are segmented into syllables by the
forced-alignment technique using the S-HMMs, and one
of the F0 transition labels, “U” or “D”, is given to each
segment according to the actual F0 pattern.

3. “P-HMMs (Prosodic HMMs)” are trained by prosodic
feature vectors within these segments, according to the
F0 transition label. Five separate models, “*-*,U”,
“*+*,U”, “*-*,D”, “*+*,D”, and “sil”, are made.
Each P-HMM has a single state.

4. The S-HMMs and P-HMMs are combined to make SP-
HMMs. Gaussian mixtures in the segmental stream of
SP-HMMs are tied with corresponding S-HMM mix-
tures, while the mixtures in the prosodic stream are
tied with corresponding P-HMM mixtures. Figure 2
shows the integration process. In this example, the mix-
tures of SP-HMM “i+chi,U” are tied with S-HMM
“i+chi,*” and P-HMM “*+*,U”.

3.4. Verification score

A posterior probability is used as the score for verification de-
cisions. The posterior probability of being the claimed speaker
Sc after observing a feature set x is denoted by p(Sc|x).

p(Sc|x) =
p(x|Sc)p(Sc)

p(x)
(4)

where p(x|Sc) is a likelihood value with claimed speaker’s SP-
HMM. The probability p(x) is approximated by using a likeli-
hood value with general speaker’s SP-HMM p(x|Sg):

p(Sc|x) =
p(x|Sc)p(Sc)

p(s|Sg)p(Sg)

∝ p(x|Sc)

p(x|Sg)
(5)

The right term of equation (5) is calculated as follows:

p(x|Sc)

p(x|Sg)
=

Σwp(x|Sc, w)p(w)

Σwp(x|Sg, w)p(w)

≈ maxw p(x|Sc, w)

maxw p(x|Sg, w)
(6)

wherew is a string of four connected digits. Equation (6) means
that our method uses two likelihoods calculated by usual speech
recognition processes using the speaker dependent (SD) and in-
dependent (SI) SP-HMMs. The verification score is denoted by
log p(Sc|x). If the score is larger than a threshold value, the
speaker is accepted as the claimed speaker.

3.5. Dictionary and Grammar

Speaker verification is performed in the text-independent frame-
work. In the dictionary, each digit has three variations accord-
ing to the F0 transitions. For instance, variations of “1” are
“i+chi,U i-chi,U sp” and “i+chi,D i-chi,D sp”.
This means that the F0 transition pattern does not change within
the period of each digit. In the grammar, all digits are allowed
to be connected with no restrictions.
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Figure 2: Building SP-HMMs using a tied-mixture technique. S-HMMs and P-HMMs are trained using segmental features and prosodic
features, respectively.
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Figure 3: Training and testing data for the verification experi-
ment when the speaker #01 is the claimed speaker.

4. Experiments

4.1. Database

Speech data were recorded at five sessions with intervals of ap-
proximately one month. The data were collected from 37 male
speakers and sampled at 16kHz with a 16bit resolution. Each
speaker uttered 50 strings of four connected digits in Japanese
at each session.

The set of data recorded at sessions 1 ∼ 3 was used for
training and data recorded at sessions 4 and 5 was used for test-
ing. The database was separated into two groups in terms of
speakers as shown in Figure 3. This figure shows the case where
speaker #01 was used as the claimed speaker. The SI model was
trained using utterances by all the speakers in speaker group B,
which did not include the claimed speaker. When one of the
speakers in speaker group B was used as the claimed speaker,
utterances by speaker group A were used for the SI model train-
ing. In this way, the SI model was always trained using the data
of a speaker group not including the claimed speaker. All the
speakers in both speaker groups A and B, except for the claimed
speaker himself, were used as impostors.

White noise was added to the training data at a 30dB SNR
level to increase the robustness against noisy speech, and testing
data were contaminated with white noise at 5, 10, 15, 20, and
30dB SNR conditions.

Table 1: Three kinds of prosodic feature vectors extracted by
Hough transform.

Prosodic feature
Vector component (dim.)vector

H-L log F0 (1)
H-D ∆ log F0 (1)
H-LD log F0, ∆log F0 (2)

4.2. Experimental results

In our preliminary experiments using S-HMMs in 30dB noise
condition, the best verification performance was obtained when
the number of mixtures in S-HMMs was four. Accordingly,
we used this mixture condition for S-HMMs in the following
experiments.

4.2.1. Effectiveness of prosodic feature vectors

We first investigated speaker verification performance in var-
ious conditions of prosodic feature vectors. Table 1 explains
three kinds of prosodic feature vectors, H-L, H-D, and H-LD,
built using the log F0 and ∆ log F0 extracted by the Hough
transform. The number of mixtures in prosodic stream (P-
HMMs) in SP-HMMs tied to the four mixture S-HMMs is opti-
mized for each prosodic feature vector at 30dB SNR condition.

Figure 4 shows equal error rates (EER) using each prosodic
feature vector at various SNR conditions. It was found that the
best number of mixtures in P-HMMs was four, irrespective of
the kind of prosodic feature vector used. All prosodic feature
vectors were effective in improving verification performance in
noisy environments. H-L yielded better performance thanH-D.
Since the best improvement was obtained when using H-LD,
we used this feature vector in subsequent experiments. The best
improvement by using H-LD was observed at SNR = 10dB; the
error rate was reduced by 39.8% from the baseline (S-HMMs)
method.

4.2.2. Effectiveness of the Hough transform

For examining the effect of the Hough transform on verification
performance, a two-dimensional prosodic feature vector NH-
LD was prepared without using the Hough transform; it con-
sisted of log F0, extracted by choosing highest cepstral peaks,
and ∆ log F0, computed by linear smoothing of the log F0 val-
ues within a 90ms window.



Figure 4: Speaker verification results in various conditions of
prosodic feature vectors.

Figure 5: Comparison of the EERs when using the prosodic
feature vector with/without the Hough transform.

The comparison of the EERs when using the feature vector
H-LD and NH-LD is shown in Figure 5. H-LD yielded better
performance than NH-LD, indicating that the Hough transform
is effective in F0 extraction in noise-robust speaker verification.

4.2.3. Effects of the prosodic stream weight

Figure 6 shows the EERs as a function of the prosodic stream
weight λP at each SNR. Improvements from baseline (λP =
0) are observed over a wide range: 0.0 < λP < 0.9 in all
SNR conditions. This means that the proposed method is not
sensitive to the change of the stream weight.

5. Conclusions
This paper has proposed a speaker verification method using
multi-stream HMMs which combine segmental and prosodic
features. The prosodic features are extracted by an F0 feature
extraction technique based on the Hough transform. Experi-
mental results using Japanese connected digit speech show that:
1) the Hough transform is effective for increasing robustness in
extracting F0 features in the proposed verification method; 2)
the best verification performance is obtained when using both
log F0 and ∆ log F0 as prosodic features; and 3) our method is
not sensitive to the change of the stream weight.

Our future works include: 1) investigating useful prosodic
features other than F0-based features; 2) improving the
SP (segmental-prosodic)-HMM topology; 3) effectively using
voiced/unvoiced information; and 4) developing an automatic

Figure 6: EERs as a function of the prosodic stream weight
(λP ) in each SNR condition

method for optimizing the stream weight.
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