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Abstract

Since spontaneous utterances include many variations, speaker-
and task-independent general models do not work well. This
paper proposes combining cluster-based language and acoustic
models based on the framework of Massively Parallel Decoder
(MPD). The MPD is a parallel decoder that has a large num-
ber of decoding units, in which each unit is assigned to each
combination of element models. It runs efficiently on a par-
allel computer, and thus the turnaround time is comparable to
conventional decoders using a single model and a processor. In
the experiments conducted using lecture speeches from the Cor-
pus of Spontaneous Japanese, two types of cluster models have
been investigated: lecture-based cluster models and utterance-
based cluster models. It has been confirmed that utterance-
based cluster models give significantly lower recognition er-
ror rate than lecture-based cluster models in both language and
acoustic modeling. It has also been shown that roughly 100 de-
coding units are enough in terms of recognition rate, and in the
best setting, 12% reduction in word error rate was obtained in
comparison with the conventional decoder.

1. Introduction

Recently, several large-scale spontaneous speech corpora have
become available and recognition performance for spontaneous
speech has been greatly improved by making speech models
using a large amount of spontaneous speech data. However,
recognition rates are still insufficient for the most applications.
This is because spontaneous speech has many variations not
only between speakers but also from utterance to utterance
within each speaker. The speaker- and utterance-specific char-
acteristics cannot be modeled by a general speaker-independent
model, since they are smoothed out in the training process. One
solution is to cover speech sounds by a set of speech models
suitable for various input utterances.

Sentence mixture language models have been investigated
in [1], in which sentence likelihood is calculated as a weighted
sum of likelihood values given by component models,

P (W) = ZAZH (W), (1

where W is a word sequence, ¢ is a component model index,
and )\; is a mixture weight of the ¢-th model. A cluster-based
language model can be considered as an approximation of the
mixture model replacing the summation by maximization and
omitting the weight term as shown in equation (2).

P(W) = maxPF;(W). 2)
Similarly, a cluster-based acoustic model chooses a component
model which maximizes the likelihood,

POIW) = maxP (O|W), 3)
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where O is a sequence of observation vectors. In [2], speaker
cluster-based HMMs were used to cope with the problem of
frequent speaker changes in broadcast news speech recognition.
Using gender dependent models in parallel can be regarded as a
special case of the cluster-based modeling [3].

So far, the cluster-based models have been investigated sep-
arately for language and acoustic modeling, and they have never
been combined partly because of computational cost. This pa-
per investigates effects of the combination using a Massively
Parallel Decoder (MPD). Lecture cluster-based models and ut-
terance cluster-based models are made and evaluated using the
Corpus of Spontaneous Japanese (CSJ) [4].

This paper is organized as follows. Architecture and pro-
cessing time of the MPD are described in Section 2. Exper-
imental conditions are described in Section 3 and results are
presented in Section 4. Finally, some discussion are given in
Section 5 and conclusions are presented in Section 6.

2. Massively Parallel Decoder

The problem of searching for the best word sequence W based
on a cluster-based language model and a cluster-based acoustic
model can be formulated as shown in equation (4), where ¢ and
j are element indices of the clusters, respectively. Since the
order of the max operators is commutative, it can be rewritten
as shown in equation (5).

max P (O|W) P (W)
= maxmax P; (O|W) P; (W) )
w i,]
= maxmaxFP; (O|W) P; (W). )
i,] w

Equation (5) can be performed by first searching for W; ; with
respect to every model combination of ¢ and j, which can be
done using a conventional decoder, and then selecting W that
gives the highest likelihood.

The MPD consists of a large number of decoding units
(DUs) and an integrator. It has a structure as shown in Figure 1
which corresponds to equation (5). Each DU is a conventional
decoder that uses one of the combinations of element language
and acoustic models. An input speech utterance is sent to all the
DUs and each DU independently processes the speech based on
its language- and acoustic-model. The recognition hypotheses
of the DUs are gathered to the integrator and a final output is
produced.

The MPD can be efficiently implemented on parallel com-
puters such as Grid [5], MPP and SCM [6]. The Grid or the
MPP connects many computers or processors to form a parallel
computer, and the SCM integrates many processing units into
a single chip. Parallel computers will become popular in the
near feature, since they solve critical problems of single proces-
sor systems such as line delay. To take advantage of parallel
computers, parallel algorithms are crucial. In this aspect, the
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Figure 1: Architecture of the Massively Parallel Decoder.
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Figure 2: Processing time of MPD

MPD is well suited to parallel computers, since it has a highly
parallel structure. Interactions between processing units occur
only when selecting a recognition hypothesis having the highest
likelihood. Therefore, the MPD can keep its high computational
efficiency largely independent of the number of decoding units.

Figure 2 shows the processing time of a MPD running on
a parallel computer. By assigning each DU to a different pro-
cessing unit (PU), the turnaround time I" of the MPD becomes
constant irrespective of the number of DUs as shown in equa-
tion (6). In the equation, ¢ and (3 represent processing times of
the DU and the integrator, respectively. Since the processing
time of the integrator is negligible compared to that of the de-
coding unit, equation (6) can be approximated as equation (7).
Thus, the turnaround time of the MPD is about the same as con-
ventional decoders using a single acoustic model and a single
language model.

T = t+p0 6)
~ t (@)

3. Experimental conditions
3.1. Recognition task

The recognition task was the Test-set 1 of the Corpus of Spon-
taneous Japanese (CSJ). The test-set consisted of ten academic
lectures given by different male speakers. In the experiment,
utterances were extracted based on silence periods longer than
500ms, and five minutes of utterances were excerpted from each
lecture. The subset therefore consists of 50 minutes of utter-
ances, which corresponds to approximately a half of the Test-
set 1. Figure 1 shows the lecture IDs and the number of utter-
ances included in each five minutes set.

3.2. Acoustic models

The training set for acoustic models was the CSJ academic lec-
tures given by male speakers, consisting of 787 lectures with the
total length of 186 hours. Feature vectors had 38 elements com-
prising of 12 MFCC, their delta, delta delta, delta log energy

Table 1: Test-set

Conference name | # of utterances used
AO0IMO0097 58
A04MO0051 77
A04MO121 73
A03MO0156 88
A03MO0112 43
AO01IMO110 65
A05MO0011 31
A03MO0106 27
A0IMO137 45
A04MO0123 23

and delta delta log energy. The CMS (cepstral mean subtrac-
tion) was applied to each utterance. HTK [7] was utilized for
model training and adaptation.

For a baseline system, a speaker-independent triphone
HMM, having 3k states and 16 Gaussian mixtures in each state,
was made. A regression class tree with 64 leaves was associ-
ated with the HMM for classifying Gaussian mixtures in MLLR
adaptation. This model is hereafter denoted as GAM (General
Acoustic Model).

Two types of cluster-based acoustic models were made; one
was based on lecture clustering and the other was based on
utterance clustering. In the utterance clustering, all the utter-
ances were independently clustered, irrespective of the lecture
in which each utterance was included. The clustering was con-
ducted as follows.

1. Randomly assign lectures/utterances to N clusters so
that all the clusters have approximately the same num-
ber of lectures/utterances. Then make each cluster-based
element model.

2. Calculate likelihood of all the lectures/utterances for all
the element models.

3. Re-assign lectures/utterances to clusters based on their
likelihood. The assignment is constrained so that all the
clusters have the same number of lectures/utterances.

4. Make a cluster-based model.

5. Return to step 2 or terminate after sufficient number of
iterations.

The likelihood values were calculated using triphone label files.
The number of iterations was set to 10 in the following experi-
ments.

Based on the obtained definitions of the clusters, lec-
ture/utterance cluster-based models for speech recognition were
made by adapting the general model to each cluster using
the MLLR adaptation method. These models are denoted
as LCAM(N) (Lecture-based Cluster Acoustic Model) and
UCAM(N) (Utterance-based Cluster Acoustic Model), where
N is the number of element models.

3.3. Language models

The training set used for language modeling included academic
and extemporaneous lectures. It consisted of 2,485 CSJ lectures
containing 6.1 million words. The baseline language model was
a word trigram interpolated with a word-class trigram based on
100 word classes. The vocabulary size of the baseline model
was 30k. Interpolation weights of 0.7 and 0.3 were used for
word and class models, respectively. The word class defini-
tion was trained using the incremental greedy merging algo-
rithm [8]. This model is denoted as GLM (General Language
Model).



Similarly to the acoustic modeling, lecture-based cluster
models and utterance-based cluster models were made. The
cluster definitions were trained using the same algorithm as
that used for cluster-based acoustic modeling, except that bi-
gram perplexity was used as a measure instead of acoustic like-
lihood. Based on the obtained definition of the clusters, lec-
ture/utterance cluster-based models were made. Each compo-
nent model was a word trigram which was trained by mixing
the entire training set and the lectures/utterances in the clus-
ter. This means that lectures/utterances in the cluster was du-
plicated in the training set. These cluster-based models were
interpolated with the word-class trigram using the fixed inter-
polation weights of 0.7 and 0.3, respectively. They are denoted
as LCLM(N) (Lecture-based Cluster Language Model) and
UCLM(N) (Utterance-based Cluster Language Model), where
N is the number of element models.

3.4. Recognition Systems

The Julius decoder [9] was used without any modification both
in a baseline recognition system and decoding units of the MPD.
A GRID system [10] was used for the MPD. The baseline de-
coding system used the speaker-independent acoustic model
(GAM) and language model (GLM), whereas the MPD used the
cluster-based acoustic model and language model. The num-
ber of the decoding units was a product of the number of ele-
ments of the cluster-based acoustic model and the cluster-based
language model, where up to 400 decoding units were imple-
mented. When lecture cluster-based models were used, the inte-
grator selected recognition hypotheses throughout each lecture
from one of the decoding units that maximized the total likeli-
hood. On the other hand, when utterance cluster-based models
were used, a hypothesis was selected independently for each
utterance.

3.5. Unsupervised adaptation

When the response time for each utterance is not crucial, recog-
nition can be performed in a batch, off-line mode. In such cases,
batch-type unsupervised adaptation can be applied as an effec-
tive way to improve the recognition rate. In our experiments,
unsupervised acoustic and language model adaptation processes
were applied to the general models as well as the cluster-based
models. The adaptation was conducted for each lecture based
on the recognition results obtained by the baseline or the MPD-
based recognition system.

For the baseline system, the acoustic model was adapted
using the MLLR method and the language model was adapted
using the word class-based method [11]. The word class-based
language model adaptation updated word probability given a
word class by maximum likelihood criteria using the recogni-
tion hypotheses. The adaptation processes for language model
and acoustic models were conducted simultaneously. The adap-
tation for the MPD-based system was conducted in a similar
way as the baseline system, in which all the element models
were adapted using the MLLR and word class-based adaptation
methods.

4. Experimental results

Table 2 shows the recognition results using the combination of
cluster-based acoustic models and the general language model.
For the lecture cluster-based acoustic modeling, the best re-
sult was obtained when the number of clusters was 10 and 20,
whereas for the utterance cluster-based modeling, the lowest

Table 2: Word error rate using the cluster-based acoustic models

CAM Lecture Utterance
# of clusters | cluster model | cluster model
1 (GAM) 249
5 24.0 237
10 23.8 23.0
20 23.8 23.2

Table 3: Word error rate using the cluster-based language mod-
els

CLM Lecture Utterance
# of clusters | cluster model | cluster model
1 (GLM) 24.9
5 24.6 24.0
10 24.7 23.6
20 24.5 23.3
40 24.3 23.6

word error rate was achieved when the number of clusters was
10. The highest word error reduction rate of 7.7% was achieved
under the condition of UCAM(10).

Table 3 shows the results using the combination of the gen-
eral acoustic model and the cluster-based language models. The
UCLM(20) achieved the highest word error rate reduction of
6.4%.

Table 4 shows the recognition results using the combina-
tion of cluster-based acoustic models and cluster-based lan-
guage models. The number of decoding units increases as
a product of the number of element models, and within the
conditions investigated in our experiments, the lowest recogni-
tion error rate was achieved with 100 decoding units for both
lecture-based clustering and utterance-based clustering. It is
also observed that utterance-based cluster models achieved sig-
nificantly lower word error rate than lecture-based cluster mod-
els, and the largest word error rate reduction of 11.8% was ob-
tained by the combination of UCLM(10) and UCAM(10).

Table 4: Word error rate using the combination of cluster-based
language and acoustic models

# of clusters #of Lecture Utterance
LM x AM DUs | cluster model | cluster model
IxT (GLMxGAM) 1 249
5x5 25 237 229
10x10 100 234 22.0
20x20 400 23.5 22.1

Figure 3 compares word error rates for each lecture us-
ing the baseline system and the MPD-based system with
ACLM(10) and UCLM(10). As can be seen, error rates were
reduced for all the test-set lectures. However, the error rate still
varies from lecture to lecture, even using the cluster-based mod-
els.

Although only likelihood values were used for selecting hy-
potheses in this paper, there exist many ways to integrate the hy-
potheses from the DUs, including the ROVER method [12]. Ta-
ble 5 shows word error rate when oracle results were used, that
is, hypotheses were selected so that the error was minimized, to
see the upper bound of the selection method. The word error
rates in this condition are much smaller than the results shown
in Table 4. Therefore, further improvement is expected by im-
proving the selection criterion.

Figure 4 shows results when unsupervised acoustic model
and language model adaptation were applied to the baseline and
the MPD-based systems. The MPD-based system was based
on UCAM(10) and UCLM(10). By applying the unsupervised
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Figure 3: Word error rates for each test set lecture.

Table 5: Lower bound of word error rates obtained by hypothe-
ses selection

# of clusters Lecture Utterance
LM x AM cluster model | cluster model
1xI (GLMxGAM) 249
5x5 232 18.0
10x10 22.5 16.5
20x20 22.0 15.2

adaptation to the MPD, a word error rate of 20.4% was obtained.

5. Discussion

It has been confirmed that utterance-based cluster models gave
significantly lower word error rates than lecture-based cluster
models. For the language modeling, this is probably because it
is easier to find similar examples in the training set when the
selection unit is shorter. In addition, since the recognition task
is to recognize academic lectures, it is unlikely that similar sto-
ries occur multiple times. Concerning the acoustic modeling,
the primary source of difference in acoustic characteristics is
considered to be individuality, and this is supposed to be consis-
tent within a lecture. Actually the difference in word error rates
between lecture-based and utterance-based acoustic models is
smaller than the difference for the language models, as shown
in Table 2 and 3. However, the utterance-based clustering is still
better than the lecture-based clustering, which probably means
that voice characteristics vary from utterance to utterance and
that there always exists some difference between voice charac-
teristics of training and testing speakers.

6. Conclusion

This paper has proposed to use the Massively Parallel Decoder
(MPD) consisting of a large number of decoding units and an
integrator. The MPD runs using cluster-based acoustic and lan-
guage models. By using parallel computers, the turnaround
time hardly increases in comparison with conventional decoders
using a single acoustic model and a language model. It has
been found that utterance-based cluster models give signifi-
cantly lower recognition error rate than lecture-based cluster
models for both language and acoustic modeling. The condi-
tion of using 100 decoding units combining 10 acoustic models
and 10 language models has achieved the minimum error rate
which is relatively 12% lower than the result using a single de-
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Figure 4: Word error rates with/without unsupervised acous-
tic as well as language model adaptation. BASE+adapt and
MPD+adapt indicate results when the adaptation is applied.

coder. Future works include improving clustering algorithms
and investigating integration methods for recognition hypothe-
ses obtained from decoding units.
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