T2R2 rIgA2US-FURIMY

Tokyo Tech Research Repository

OO /0000
Article / Book Information
Title Configuration Management in a Method Engineering Context
Author Motoshi Saeki

DOI http://dx.doi.org/10.1007/11767138_26
0000 /Copyright The original publication is available at www.springerlink.com.
Note O000000oooOoooooooa

This file is author (final) version.

Powered by T2R2 (Tokyo Institute Research Repository)

http://dx.doi.org/10.1007/11767138_26
http://t2r2.star.titech.ac.jp/

Configuration Management in a Method
Engineering Context

Motoshi Saeki

Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

Tel. +81-3-5734-2192 Fax +81-3-5734-2917 E-mail saeki@se.cs.titech.ac.jp

—

Abstract. Method Engineering is the discipline for exploring techniques
to build project-specific methods for information system development
and Computer Aided Method Engineering (CAME) is a kind of comput-
erized tool for supporting the processes to build them. In this method
engineering environments, version control and change management for
both model descriptions and method descriptions should be seamlessly
combined. In addition, when the method being used is changed during
a project, we should check whether the current version of a model is
still consistent to the newer version of the adopted method. This paper
proposes a technique to solve the issues on version control and change
management in method engineering processes.

1 Introduction

Development methods for information systems (simply, methods) and their sup-
porting tools are one of the most significant key factors to get a great success of
development projects. To enhance the effect of methods used in a development
project, we need to adapt the methods or build the new ones so that they can fit
to the project. Method Engineering is the discipline for exploring techniques to
build project-specific methods for information system development, called sit-
uational methods. Computer Aided Method Engineering (CAME) is a kind of
computerized tool for supporting the processes to build them [7].

Although we can have a powerful situational method, another difficulty origi-
nating from frequent changes of a product still remains. An artifact is frequently
changed by various reasons, e.g. customer’s requirements changes, even during
its development. Developers should have various versions of an artifact and man-
age them in their project. In this situation, the techniques for version control
and change management, i.e. for configuration management, are significant to
support their tasks by using computerized tools. In [10], we have developed a
version control system for model descriptions that are represented in diagram-
matic form such as UML diagrams. Unlike the version control systems for text
documents, our system can handle with logical components, e.g. “Class” and
“Attribute” in a class diagram, as units of version control.

In method engineering environments, as well as changes of a model descrip-
tion, the description of the adopted methods may be changed. Therefore the
support for version control and change management of methods themselves is

necessary. In [11], the changes of methods were classified into a set of patterns,
but it did not mention any support for the version control of methods themselves.

In change management, there exist the dependencies among the components
of an artifact, and the change of a component may be propagated to the other
components having the dependencies to it, in order to keep consistency on them.
This kind of change management should be done 1) on model descriptions (sim-
ply, product), 2) on method descriptions (simply methods or method fragments)
and 3) on both of them. The third case is as follows; when the adopted method is
changed, the change is propagated to the model description that was developed
with the older version of the method. Model management systems such as Coral
[3] and UML repository systems [5, 8, 12] are only for meta models and only
for products respectively. They did not consider the support for version control
and change management sufficiently from method engineering context, i.e. from
both side of products and methods.

To solve above issues, this paper discusses a technique to implement a con-
figuration management mechanism in our CAME tool combining with Version
Control System for software diagrams, both of which that has been developed
before independently [10, 13]. We have two key techniques; the first one is a
three-dimensional model to conceptualize the difference between product and
method version control [14]. The second is “operation based approach”, where
change operations that were performed on an artifact! are recorded and are ap-
plied in order to recover a current version of the artifact. The rest of the paper is
organized as follows. Our CAME tool and Version Control System is introducto-
rily summarized in the next section. In addition, we illustrate the details of the
issues on version control and change management in method engineering con-
text. In section 3, by using a simple example, we discuss the three-dimensional
model for conceptualizing version control and it is very useful to get the so-
lutions to the issues mentioned above. Section 4 discusses how to achieve the
change management to maintain consistency on artifacts and clarifies how our
technique can solve the issues mentioned in section 2.

2 CAME tool and Version Control System

2.1 CAME tool

Our CAME tool is based on reuse technique similar to the other existing CAME
tools such as Decamerone [7], Mentor [15] and MetaEdit+ [9]. Reuse technique
is characterized by using reusable method portions, called method fragments or
method chunks, which can be extracted from several existing methods. Method
fragments are stored in a specific database called method base, and a special en-
gineer, called method engineer obtains suitable fragments from the method base
and assemble them into a new and project-specific method. The method engi-
neer, for building a project-specific method, uses a method editor to manipulate
method fragments and assemble them into a new method. The method editor is
a kind of diagram editor and allows the method engineer to easily edit method

1 We use the term “artifact” for products and methods.

fragments. The method description is called meta model, and we use Class Dia-
gram to describe a meta model. Our CAME tool generates from a meta model,
1) a diagram editor for supporting inputting and editing products, such as the
editor of Class Diagram, and 2) the schema of a repository to which the gen-
erated editors store the developed products. Software engineers may develop a
model of an information system following the project-specific method, by using
the generated editors. The example of the meta model of simplified version of
Class Diagram is shown in a Figure 1. As shown in the figure, the method frag-
ment “ClassDiagram” has the concepts “Class”, “Operation” and “Attribute”
and all of them are defined as classes on a meta model. These concepts (called
method concepts) have associations (called method associations) representing
logical relationships among them. For instance, the concept “Class” has “Fea-
ture” (a super class of Attribute and Operation), so the association between
“Class” and “Attribute” denotes has relationship. We simply call both method
concepts and method associations method elements.

In addition, we should consider constraints on the products. Suppose that we
define the method “ClassDiagram” as shown in Figure 1. In any class diagram
(any instance of “ClassDiagram”), we cannot have different classes having the
same name. In order to keep consistency of products, we specify this constraint
on the meta model, by using OCL (Object Constraint Language). The OCL
expression in the right bottom window “CAMEPackage” of Figure 1 represents
the constraint of “different names must be attached to different classes”.

& & o =] |
File Help
DR E|e| |k x| %)% | & 7] [% @ | 2] |%
(] Exportasiml... | 5 CallMetacase.. ClassDiagram |
D EI / /q * . Ol @ < /w * * Class Generalization rAggregatmn rAasnmalmm ‘
= P | T
- Editor hode Vi RS R
-
| ClassDiagram
lip.ac titech ¢z se.came.defmodel.shape. UseCaseShape |~
lip.ac titech ¢z se.came.def. model.shape. SystemShape
lip.ac titech ¢z se.came.def model.shape.ComponentShape —|
lip.ac titech.cs se.came.def model.shape.PackageShape
lip.ac titech ¢z se.came.def model.shape. StateShape L
lip.ac titech ¢z se.came.def.model.shape. StartStateShape
lip.ac titech.c=s se.came.def. model.shape.FinalStateShape
lip-ac titech.cz se.came.def model.shape.ClassShape -
o [1 | —

Ontology | option |
CAMEDescription
CAMECanstraint T
AttributePanel r RelationPanel

<<feature=>>

Attribute
—

Ir

<<feature>>
Operation
|

==re|almnsh|p>=r <<relationship=> <<relationship>=
! on | Agaregation Association

Constraint

context ClassDiagram inv

ClassMamelsUnigue

ClassDiagram_Class allinstances -=
forAllio: ClassDiagram_Class |

(4] [} [»] (o.name == gelfname) or (n=self))

4

| OK || CANCEL H UPDATE

Fig. 1. An Example of Method Fragments

A generated diagram editors deals with a product conceptually as a graph
consisting of nodes and edges. Thus we should provide the information on which
the method concepts in a meta model can be represented with nodes or edges
of the graph. The method engineer provides two types of this information; one
is the correspondence of method concepts to the elements of graphs, i.e. nodes,
edges and texts within the nodes or on the edges, and another is notational in-
formation of the nodes and edges. Suppose that she or he tries to generate a class
diagram editor from “ClassDiagram”. The concept Class in the “ClassDiagram”
conceptually corresponds to nodes in a graph, while Generalization, Aggregation
and Association correspond to edges. She or he provides this information as the
stereotypes attached to the method concepts in our CAME tool. The right top
window “MetaCase” in Figure 1 includes the information for the generator. The
readers can find the stereotypes “<entity>>" and “<relationship>" attached
to the classes in the meta model of Figure reffig:sample data. For example,
the classes Generalization, Aggregation and Association in the figure have the
stereotypes <relationship>. The stereo type <entity>> stands for the corre-
spondence to a node and the <relationship>> corresponds to an edge. In the
example of the figure, an occurrence of Class in a class diagram corresponds to
a node from the viewpoint of the graph, while an occurrence of Generalization,
Aggregation or Association between Classes corresponds to an edge. Note that
a generated editor automatically includes commands for creating and deleting
the method concepts corresponding to the nodes or the edges.

In addition, the method engineer should specify which figures, say a rectangle,
a circle, an oval and a dashed arrow, are used for expressing method elements
on the editor screen. Basic figures such as figures used in UML diagrams are
built-in and their drawing programs are embedded as Java classes into the gen-
erator. In the example of Figure 1, the method engineer tries to use a rectangle
(ClassShape) for the figure of Class. Our generator produces a diagram editor
by embedding the above information and Java classes into a diagram editor
framework.

2.2 Scenario Example

In this sub section, we have a following simple scenario of a development as an
example, which will be used throughout this paper. It is very useful to clarify
the issues of version control and change management in a method engineering
context.

A method engineer constructed a new method by assembling Class Diagram
(CI#1) and Sequence Diagram (CI#2) of UML 2 by adding a method associ-
ation “instance_of’ as shown in Figure 2. Each meta model can be considered
as a unit of configuration management, i.e. configuration item of method level.
Following this new method, a software engineer constructs a class diagram of
the system to be developed, and then develops the sequence diagrams, each of
which defines an scenario of the interactions among objects belonging to the
classes appearing in the class diagram. Figure 3 illustrates a part of Lift Control

2 Both of the diagrams are more simplified versions for comprehensiveness.

System developed following this method. Each diagram is a configuration item
of product level.

Class Diagram
_Attribute
Cl#1 ‘ngregation F——{ Class I
\ 1 \
’
—
L1
instance_of
send] .
Cl#2 next
[1 1

receive

Sequence Diagram

Fig. 2. Assembling Method Fragments

The engineer completes the diagram shown in the left part of Figure 3, and
commits it to a repository as the version 0. After that, he adds the object “Door”
to the sequence diagram as shown in the right part of Figure 3, and commits it
as the version 1. When the engineer adds an object to a sequence diagram, its
class should be included in the class diagram in this method MO. If not included,
she or he has to add its class to the class diagram to keep consistency between
the class diagram and the sequence one. In this example, since “Door” class
does not appear in the version 0 of the class diagram, the engineer adds it for
the version 1, as shown in Figure 3. The supporting tool hopefully guides the
engineer for this kind of change propagation, and change propagations depend
on methods and method assembly. The engineer can check-in her or his product
after adding “Door” to both of the sequence diagram and the class diagram.

We continue the example. See Figure 4. The engineer finds that Lift Con-
trol System has real-time property, and extends the current method so that
the engineer can model timing constraints in sequence diagrams. The engineer
modifies the meta model of Sequence Diagram (MO : version 0 of the method)
by adding the method concept “Timing Constraint”, and gets a new version
1 (M1). Although we need the version control of meta models, it is the same
as the version control of products, because our meta model is represented with
Class Diagram as mentioned in section 2.1. The version control of meta models
is called “method version control” to distinguish it from usual version control of
products (called “product version control”). Now, the engineer continues her or
his activities following the new method M1. Since this change to M1 was adding
a new method concept only, it has not impacted the current version of the prod-
uct, version 1. We continue our example further. As shown in the upper part
of Figure 4, the engineer adds a timing constraint “b-a< 2 min.” (a lift should
be arrived within 2 minutes after pushing a request button to a lift call). Sup-
pose that the engineer return back the method to the older one MO after that.

Since MO does not include “Timing Constraint”, the existence of “b-a<2min.”
in the current product causes inconsistency. Thus whenever a current method is
changed, we need to check if the new version of the method is consistent to the
current version of the product that was made following the older method.

Suppose another change on the method MO in Figure 2. In the case that the
engineer deletes the method association “instance_of’ and tries to commit it as a
new version of the method, what’s happen? As a result, the engineer will get the
isolated two methods each of which is the same as the already existing method,
i.e. Class Diagram and Sequence Diagram, and this result is not meaningful.
Thus we should avoid getting such meaningless versions of the method when we
change the used method fragments, and method assembly rules are applicable
to prevent from generating meaningless methods [6].

To summarize the above discussions, we can categorize our issues on change
management into three; 1) for products, 2) for method fragments and 3) for
both. How to solve these three issues will be discussed in section 4.

Version #0 Version #1
Configuration Item #1 Configuration Item #1 Ver.1
o Lie
4800 40n0 [©——poar |
Version Up \

! —

Butt Schedyl Lift D:
[Button] [Schedbler [Lift | [Button | T on [Schedliler [Lift | [Door]
| 1:on : i | |
I || 3: request posil}on : 5 e I| 3: request position |
Il 2: turn on Iighti i info. I + turn on ligt t: info. I |
: ! o | || 4: position info/l I
1| 4: position info/l I i i i
: I 5: request]! I |5 {euuest | I
| I Il 5. ol o move || I
Il 7. turn off light]| to move | I 7: turn off I|ghtI I |
I | . I I | 6:arrival ||
I | 6: arrival I | I h i
: I i I H | 7:open |
H ¥
! I | : ! ! !
Configuration Item #2 Configuration Item #2 Ver.1

Fig. 3. Lift Control System

2.3 Version Control System

In our version control system, we adopt a technique to store differences between
two versions in a repository like CVS [1] and Subversion [2], etc. so that we can

Button ; Scheduler Lift Door Button Scheduler Lift Door
1on 1:on
|

|
3: request positidbn
info. !

a 3: request positidbn
info, |

2: turn on light 2: turn on light

4: position info. 4: position info.

5: request 5: request
| to move nna : to move
7: turn off light 7: turn off light b
6: arrival 6: arrival b-a<2min.

7: open 7: open

e — — —

U
i
i
i
|
|
I
i
!

e ==
R

U
I
I
I
I
1l
!
¥
I
I

e
e

——

Timing Constraints

participate d participate send

Object :> - | Object |
g I
I —
—
i "
receive receive

Ver.0 (MO) Ver.1 (M1)

Eﬁ

Fig. 4. Version Up of A Method

recover the older versions that were previously produced. The state of the arti-
fact at a certain time is considered as a baseline, and the version control system
stores to the repository the difference between this baseline and each version.
To extract a difference between two adjacent versions efficiently, we focus on the
developer’s activities of editing a product by using an editor. In other words,
we generate an element of the difference from an execution of an editor oper-
ation such as “create” and “delete” a component. The sequence of the editing
operations that a developer is performing is captured in real-time during her or
his editing activity using the editor. The acquired operation sequence can be
considered as the difference between versions, and is stored in the repository.
Our CAME tool, which automatically generates a diagram editor from the meta
model description, should automatically embed the functions of acquiring per-
formed editing operations in real-time and of transforming them to difference
data, when it generates the editor. The details of this mechanism was discussed
in [10].

Our CAME tool can export the XML document that represent logical in-
formation of a diagram in XMI-compliant format [4]> . For simplicity, the rep-
resentation of differences is based on XMI, and we use XMI.update operations.
They are used for informing the differences of XMI-compliant documents when

3 For comprehensiveness, the XML documents in this paper are made simpler rather
than real XMI-compliant format.

the documents are exchanged. We have three operations; XMI.add for adding
a component to the older document, XMI.delete for deleting an existing com-
ponent, and XMI.replace for replacing an existing component element with a
new one. Figure 5 illustrates how to represent differences with XMI. A software
engineer adds “Door” class and an aggregation from “Lift” to it. These change
operations performed on the editor are transformed into two XMI.add occur-
rences and the occurrences are stored as a difference from Version 0 to Version
1. To check-out Version 1 from Version 0, our version control system apply the
XMI.add occurrences successively to the XMI document of Version 0, which is
a baseline in the sense that the complete document is stored.

Version 0 Version 1
<Class xmi.id="1"> Configuration Item #1 <Class xmi.id="1">
<name> Lift </name> Lift <name> Lift </name> Configuration Item #1 Ver.1
</Class> 1“‘3;;'“;" </Class> R
own! position
<Attribute xmi.id="20"> F N <Attribute xmi.id="20"> |0 | [Door_|
<name> position </name> <name> position </name> 7 Q —
<type> </type> — ;t\ypi <ftype>
</Attribute> :> </Attribute> —
<Association xmi.id="30"> <Association xmi.id="30">
<name> aggregation </name> <name> aggregation </name>
<AssociationEnd xmi.id="32" xmi.idref="1"/> <AssociationEnd xmi.id="32" xmi.idref="1"/>
<AssociationEnd xmi.id="33" xmi.idref="20"/> <AssociationEnd xmi.id="33" xmi.idref="20"/>
</Association> </Association>
Forward
Difference
<Class xmi.id="55">
<XMI.add> N <name> Door </name>
<Class xmi.id="55"> </Class>
<name> Door </name>
</Class> <Association xmi.id="56">
</XMI.add> <name> aggregation </name>
> <AssociationEnd xmi.id="57" xmi.idref="1"/>
<XMI .add>_ - <AssociationEnd xmi.id="58" xmi.idref="55"/>
<Association xmi.id="56"> </Association>

<name> aggregation </name>
<AssociationEnd xmi.id="57" xmi.idref="1"/>
< AssociationEnd xmi.id="58" xmi.idref="55"/>
</Association>
</XMl.add> J

Fig. 5. Representing with XML

Our version control system supports version branching and merging branched
versions. Suppose that our software engineer produces a new version Ver. 2 by
adding a subclass of “Door” to Ver.1 in Figure 3, while the engineer also creates
a branched version Ver.1.1 by deleting the class “Door” from Ver.1l. When he
tries to merge the Ver. 2 to Ver. 1.1, a conflict occurs. Since Ver. 1.1 does not
have “Door” class any longer, adding automatically the subclass of “Door” by

applying the difference from Ver.1 to Ver. 2, is impossible. In this case, our system
asks the engineer to take the alternative of adding “Door” by hand to continue
this merge operation, or canceling this merge operation. To detect this conflict,
each recorded change operation has the pre condition that should be checked
before applying it. In XMI.delete, its pre condition is that the object to be deleted
should exist in the product. In the above example, the operation “<XMI.add>
<Association xmid.id =...> <name> Generalization </name>...</XMl.add;”
(adding an association Generalization from Door class to a subclass) requires a
source object and a destination of the association as a pre condition, i.e. “Door”
is required to execute this operation. Pre condition are automatically generated
and attached to change operations to be stored as a difference. Pre conditions
maintain consistency not only for merging branched version but also for change
propagation, as mentioned later in sections 4.2 and 4.3.

3 Conceptual Model for Version Control

In this section, we show a three-dimensional model to conceptualize our version
control technique [14] and how to use it. We have “products” and “method
fragments” as targets of version control, and each target consists of configuration
items. Thus, we can consider in a version space three axes; product, method
(fragment) and configuration item as shown in Figure 6. Each lattice point in
the figure represents a version of a product to be managed.

In our version control system, an engineer has working spaces at his local
site, and performs check-out and check-in operations between her or his working
space and a repository. When the engineer checks out from the repository the
version n of a product which has been developed by method M, a working space
for version n+1 is allocated at her or his local site and an editor for M is invoked.
The version n of a product is loaded into the working space. The engineer uses
the editor to modify the version n, and after completing the modification, he or
she stores it as version n+1 into the repository (check-in). A working space is
generated allocated method by method. In the case that the engineer uses the
methods MO and M1, both a working space on M0 and a working space on M1
are generated. Note that our repository has two levels: one is for storing products
and the other is for meta models.

Following the scenario of Figures 3 and 4, consider what operations our en-
gineer performs on our version control system. The engineer’s activities are il-
lustrated in Figure 7. The engineer selects the method MO and generates an
empty working space by using “new” command at first. As shown in Figure3,
the method M is the result of assembling Class Diagram and Sequence Diagram,
and the engineer develops two types of diagram by using each graphic editor
(2:input & edit). Let the two diagrams be CO and S0 respectively. The engineer
checks in them to the repository (3:check-in) and they are stored as version 0
(P0). Continuously, the engineers adds the “Door” object to the sequence dia-
gram SO (4: edit) and gets the version 1 (S1). If the engineer tries to check in
it to the repository, she or he fails because the current PO is not satisfied with
the constraint “for each object in a sequence diagram, its class is included in a

pd)von (Ed) e A (zd) Z 3N

(1d) TBA (0d) 0N

UOBB A 10Npoid

Towosn

R gt S &5
funie s v (T 1) =eowmyp

(OW) 0" oA

oN19004

@ @ @ (T

EXELEY]

UOS.BA JNPOId

|
/

UOSBA poyp ¥

UOBIA 1Npold

wel|
uoirInfyuod

uo .mb7

pourN

(TW) T RA

(Td) T RA (od)oeA

~ \
e (19) wey| uoreINBucD

B }=eoweup

100p

1 ugdo:,

e

~Joop

Fig. 6. Three Dimensional Model

10

class diagram”. To get consistency, the engineer adds the Door class to the class
diagram C0 and successfully checks in it (5: check-in). The new product comes
in the repository as version 1 (P1).

Furthermore, the engineer tried to extend the method MO to M1 as shown
in Figure 4, and checks out MO from the meta-level part of the repository (6:
check-out). The engineer can have a working space for constructing M1, and
MO is loaded to the space. By using a method editor, as shown in Figure 4,
the engineer adds the method concept “Timing Constraint” to M0 (7:edit) and
then checks in it as version 1 (M1) to the repository (8:check in). To continue
his task by using the new version M1, he creates an empty working space for
P2 on M1 (9: new), and checks out P1 to this space (10: check-out). After that,
the engineer adds timing constraint “b-a< 2 min.” (11: edit) and checks in the
resulting product (12: check-in). This product is registered into the repository
as version 2 (P2).

Next, suppose that for a reason, the engineer comes to want to return the
used method back to the older version M0. The engineer tries to import MO at
the current working space (13: import). When importing MO0, the system checks
consistency of the current product to M0 and the import operation is succeeded if
the consistency check is passed. In our example, since the difference between MO0
and M1 includes <XMI.delete> ... “Timing Constraint” ... </XMI.delete> and
the current product has its instance “b-a<2 min.”, the engineer is notified of the
inconsistency. The engineer deletes “b-a<2 min.” according to the notification
and then imports MO again. Now, the engineer succeeds in importing M0 and
checks in the current product as version 3 (P3) to the repository (14: check-in).
Figure 6 includes projections of this simple scenario in the 3 dimensional cube,
and the readers can trace a trajectory of the engineer’s activities in the cube.

4 Solving Issues on Change Management

4.1 Change Propagation on Products

Consider again the example scenario in section 2.2. Our software engineer added
the “Door” object to the sequence diagram and checked in it to the repository,
as shown in Figure 3. However, this adopted method consisting of Class Dia-
gram and Sequence Diagram requires the addition of “Door” class to the class
diagram in order to maintain consistency on the product. This is typical change
propagation on configuration items in product level. The supporting tool hope-
fully guides the engineer for this kind of change propagation, and it depends on
methods and method assembly. In our CAME tool, we can specify the constraints
with OCL as shown in the right bottom window of Figure 1. In fact, we put the
constraint “for each object in a sequence diagram, its class must be included in
a class diagram” with OCL when assembling Class Diagram and Sequence Dia-
gram into the example method. We can realize this type of change management
on configuration items by means of consistency checking using OCL evaluator.

11

Repository

L:new Working Space for P1 on MO
) co
MO 2: input & edit
— — ; j
Pl %] 3:check-in j 4 edit

5: check-in C1

Working Space for M1

6:check-out

MO

O Working Space

7:edit _for P2 on MO

O =
M1

Working Space for P2 on M1
o 9:new
%) C1 ;
MO . - Working Space
& M* for P2 on MO
PL_— | ~
%J Jill:edit Cl
P2 Je——] 12:check-in @
v
-81

13:import Working Space for P3 on MO

Mo - O C3 Working Space

for P2 on MO

e El

14:check-t c1
P3

—=> : Direction of Version Up

Fig. 7. Version Control System

12

4.2 Change Propagation on Methods

As for change management on method fragments, we can consider two categories.
The first one is quite similar to the consistency checking on configuration items
of product level, which was mentioned in the section 4.1. Since our method frag-
ments are defined as class diagrams and activity diagrams, consistency checking
on them is possible by using constraints written with OCL in the same way as
consistency checking on products. The constraints are not defined by method
engineers, unlike product level, but as method assembly rules in advance. For
example, we have a method assembly rule “at least one method concept and/or
method association that connects the method fragments to be assembled should
be newly added”, which says that when we assemble method fragments, we
should connect logically them by using newly added method elements [6]. Sup-
pose that our method engineer deletes a method association “instance_of’ be-
tween “Class” of method fragment “Class Diagram” and “Object” of “Sequence
Diagram” in Figure 2, as illustrated in section 2.2. This deletion operation vio-
lates the above method assembly rule and causes logically isolation of these two
method fragments in the resulting method. Checking consistency is performed
by using the method assembly rules represented with OCL, and it is the same
technique in the section 4.1.

The second one is the propagation to the other methods that have used
the changed method fragments. See Figure 8 and suppose that we have two
methods M#1 and M#2; M#1 are composed from Class Diagram and Sequence
Diagram, and M#2 are from State Diagram and Sequence Diagram. The method
engineer updates the fragment MF#3 (Sequence Diagram) by adding “Timing
Constraint” concept as shown in Figure 4. After this version-up, what happens to
the existing methods M#1 and M#?2 of version 17 It is desirable that M#1 and
M#2 are automatically updated to their newer versions having the new Sequence
Diagram fragment Ver.1. The difference from Ver.0 to Ver.1 of Sequence Diagram
is automatically applied to Ver.0 of M#1 and M#2 so as to get their newer
versions Ver.l. As a result, the method engineer can get the newer versions
that have “Timing Constraints” concept in Sequence Diagram parts in M#1
and M#2. During the application, the pre conditions of the change operations
included in the difference are verified so as to avoid inconsistency. It is the
same way as merging branched versions mentioned in section 2.3. After finishing
the application, the generated newer versions, i.e. Ver.1 of M#1 and M#2, are
verified whether method assembly rules are satisfied or not.

4.3 Change Propagation between Products and Methods

Consider again the example scenario of sections 2.3 and what we should do to
maintain consistency, when the method is changed back from M1 to MO, i.e.
deleting “Timing Constraints” concept, as shown in Figures 6 and 7. By using
the forward difference for the version-up from MO0 to M1, we can get the backward
difference from M1 to MO as follows.

<XMI.delete>
<Class xmi.id="102">

13

MF#3
[MF#1 J [(MF#2 J (ge MF#3 J‘)- Sequence Diagram

(Class Diagram State Diagram quence Diagral ems)

Ver.0 Ver.0

WVer.0
(v |

automatically
updated

Ver.0

Ver.l1

Ver.1 Ver.1

Fig. 8. Change Propagation on Methods

<name> Timing_Constraints </name>
</Class>
</XMI.delete>
<XMI.delete>
<Association xmi.id="103">
<name> aggregation </name>

</XMI.delete>

It is easy to automatically get the above difference, by replacing the occur-
rences of “add” with “delete” and vice versa in the recorded difference from
MO to M1. In the case that the method engineer deletes a method concept or
association from a method fragment and commits it as a new version, we can
get a difference including “XMI.delete”. All that we should do for consistency
checking to the current method are to look for “XMI.delete” in the difference
from the last version to the current one, and to extract the method elements
included in XMI.delete. And then, we detect the components whose types are
the extracted method elements. In this case, we can extract the method element
“Timing Constraints” appearing in the above XMI.delete fragment, and then
can detect the components whose type is “Timing Constraints” in the sequence
diagram. If the components are detected in the current version of a product, our
tool informs the engineer that inconsistency occurs on account of changing the
method. The technique of detecting this kind of inconsistency is to focusing on
the occurrences of XMI.delete in the difference of a method change.

5 Conclusion and Future Work

This paper discusses the problems of configuration management, especially ver-
sion control and change management in method engineering environments, and
proposed an integrated technique to solve them. In particular, in section 4, we
clarified various types of change propagations in a method engineering context,

14

and showed that we could solve their issues by our proposed technique. And we
discussed the CAME tool where this technique is embedded.

Although we have implemented basic commands mentioned in section 4 and
embedded our CAME, we need more functions, in particular browsing in a repos-
itory, displaying the status of products (consistent or not, the newest version or
not, etc.), and retrieving a specific version not only by using version number, to
make it more practical. And more case studies are necessary to assess our tech-
nique and the CAME tool together with version control functions. The support
for cooperative tasks by a team is also one of the future works.

References

Concurrent Versions System. http://www.cvshome.org/.

Subversion. http://subversion.tigiris.org/.

The Coral Metamodeling Toolkit. http://mde.abo.fi/tools/Coral/.

XML Metadata Interchange. http://www.omg.org/.

C. Bock. UML without Pictures. IEEE Software, 20(5):33-35, 2003.

S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-Modelling Based Assembly

Techniques for Situational Method Engineering. Information Systems, 24(3):209

—228, 1999.

7. F. Harmsen. Situational Method Engineering. Moret Ernst & Young Management
Consultants, 1997.

8. R. Keller, J.-F. Bedard, and G Saint-Denis. Design and Implementation of a UML-
Based Design Repository. In Lecture Notes in Computer Science (CAiSE2001),
volume 2068, pages 448-464, 2001.

9. S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ : A Fully Configurable Multi-User
and Multi-Tool CASE and CAME Environment. In Lecture Notes in Computer
Science (CAiSE’96), volume 1080, pages 1-21, 1996.

10. T. Oda and M. Saeki. Generative Technique of Version Control Systems for Soft-
ware Diagrams. In Proc. of the 21st IEEE Conference on Software Maintenance
(ICSM’05), pages 515-524, 2005.

11. J. Ralyte, C. Rolland, and R. Deneckere. Towards a Meta-tool for Change-Centric
Method Engineering: A Typology of Generic Operators. In Lecture Notes in Com-
puter Science (Proc. of CAiSE’2004), pages 202-218, 2004.

12. N. Ritter and H.-P. Steiert. Enforcing Modeling Guidelines in an ORDBMS-based
UML-Repository. In Proc. of International Resource Management Association
Conference (IRMAZ2000), pages 269-273, 2000.

13. M. Saeki. Toward Automated Method Engineering: Supporting Method Assembly
in CAME. In Engineering Methods to Support Information Systems FEwvolution
(EMSISE’03 in OOIS’03). http://cui.unige.ch/db-research/EMSISE03/, 2003.

14. M. Saeki and T. Oda. A Conceptual Model of Version Control in Method Engi-
neering Environment. In Proc. of CAiSE Short Paper 2005, pages 89-94, 2005.

15. S. Si-Said, Rolland C., and G. Grosz. MENTOR : A Computer Aided Re-

quirements Engineering Environment. In Lecture Notes in Comupter Science

(CAiSE’96), volume 1080, pages 22-43, 1996.

S G =

15

