[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

Jo /0000
Article / Book Information
Title A Concurrency Control Method for Parallel Btree Structures
Author Tomohiro Yoshihara, Dai Kobayashi, Ryo Taguchi, Haruo Yokota
Journal/Book name Proc. of International Special Workshop on Databases For Next

Generation Researchers (SWOD 2006), Vol. , No., pp. 71-76

Issue date 2006, 4

DOl 10.1109/ICDEW.2006.7
RL | mesesiessogmecu
Copight | (12006 IEEE. PersonaiT use of s materal s perited, Permisson

from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note OO0000000000000O00O0d
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

A Concurrency Control Method for Parallel Btree Structures

Tomohiro Yoshihara!

Dai Kobayashi'

Ryo Taguchi? Haruo Yokota®!

'Department of Computer Science, Graduate School of Information Science and Engineering,
Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo 152—-8552, Japan
2Science and Technical Research Laboratories, Japan Broadcasting Corporation
1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510, Japan
3Global Scientific Information and Computing Center, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
{yoshihara,daik} @de.cs.titech.ac.jp, taguchi.r-cs @nhk.or.jp, yokota@cs.titech.ac.jp

Abstract

A new concurrency control protocol for parallel Btree
structures, MARK-OPT, is proposed. MARK-OPT marks
the lowest structure-modification-operation (SMO) occur-
rence point during optimistic latch coupling operations, to
reduce the cost of SMO compared to the conventional pro-
tocols such as ARIES/IM and INC-OPT. The marking re-
duces the frequency of restarts for spreading the range of
X latches, which will clearly improves the system through-
put. Moreover, the MARK-OPT is deadlock free and satis-
fies the physical consistency requirement for Btrees. These
indicate that the MARK-OPT is right and suitable as a con-
currency control protocol for Btree structures. This paper
also proposes three variations of the protocol, INC-MARK-
OPT, 2P-INT-MARK-OPT and 2P-REP-MARK-OPT, by fo-
cusing on tree structure changes from other transactions.
We implement the proposed protocols, the INC-OPT, and
the ARIES/IM for the Fat-Btree, a form of parallel Btree,
and compare the performance of these protocols using a
large-scale blade system. The experimental results indi-
cate that the proposed protocols always improve the system
throughput, and the 2P-REP-MARK-OPT is the most use-
ful protocol in a high update environment. Moreover, in the
experiment, the low frequency of restarts in the proposed
protocols indicates that the marking in the proposed proto-
cols is effective.

1 Introduction

In a shared-nothing parallel machine for database sys-
tems, retrievals and updates are performed in parallel on
a processing element (PE) storing the object data. Bottle-
necks on highly accessed PEs by access-request skew de-
grade system performance. To improve the performance,

data partitioning methods are significant [3, 4]. The value
range partitioning method with a parallel Btree structure is
an excellent approach to handle the skews, as it also pro-
vides clustering I/Os and fast access paths for both exact
match and range queries.

To make the parallel Btree practical, it is important to
consider the cost of update operations requiring concurrent
accesses to multiple PEs. If all PEs have copies of a single
Btree, the synchronization between the PEs degrades the
system throughput considerably. On the other hand, if all
index nodes of a Btree are only placed on a single PE, the
PE becomes a bottleneck in parallel processing due to the
concentration of all index accesses to it. To resolve these
problems, an update conscious parallel Btree structure, Fat-
Btree, has been proposed, and experimental results indicate
that Fat-Btrees provide better performance than other paral-
lel Btrees [12].

It is also important to provide an efficient concurrency
control protocol for parallel Btree structures, including Fat-
Btree. The INC-OPT protocol suited for a parallel Btree on
a shared-nothing parallel machine has been proposed [8].
The INC-OPT protocol outperforms the conventional Btree
concurrency control protocols, such as the B-OPT proto-
col [1] and the ARIES/IM protocol [9]. However, the
costs of spreading an X latch in the protocol are still high
when structure modification operations (SMOs) occurred
frequently, which degrades the total performance.

In this paper, we propose a new concurrency control
protocol for parallel Btree structures, MARK-OPT. It re-
duces the frequency of restarts retraversing from the root
node compared with the INC-OPT protocol. We also pro-
pose three variations of the protocol, INC-MARK-OPT, 2P-
INT-MARK-OPT and 2P-REP-MARK-OPT, focusing on
the tree structure changes caused by other transactions.

We implemented the four proposed protocols, the INC-

root page
el

\\

i nqex page
I

-

)

| leaf page
|

Figure 1. Fat-Btree

OPT and the ARIES/ IM! on an autonomous disk sys-
tem [11] using the Fat-Btree as the distributed directory
structure and measured the system throughput with chang-
ing update ratio. These experimental results indicate that
the proposed protocols are effective.

The remainder of the paper is organized as follows. First,
the concept of the Fat-Btree and the concurrency controls
for parallel Btrees are introduced as background in section
2. We propose the new concurrency control protocols for
parallel Btree structures in section 3. The experimental re-
sults are reported in section 4. The final section presents the
conclusions of this paper.

2 Background
2.1 Fat-Btree Structure

The Fat-Btree [12] is a form of parallel Btree in which
the leaf pages of the B*-tree are distributed among PEs and
each PE has a subtree of the whole Btree, which contains
the root node and intermediate index nodes between the root
node and leaf nodes allocated to the PE. Figure 1 shows an
example of a Fat-Btree using four PEs.

Although the number of copies increases with proximity
to the root node in a Fat-Btree, the update frequency of these
nodes is relatively low. On the other hand, leaf nodes have a
relatively high update frequency but have no copy. Conse-
quently, the nodes to be updated more frequently have lower
overhead for updating with respect to the synchronization
between duplicated nodes.

Moreover, in the Fat-Btree, index pages are only nec-
essary for searching for the leaf pages stored in each PE.
Therefore, the Fat-Btree can have a high cache hit rate if
the index pages are cached in each PE. Because of the high
cache hit rate the update processes and the search processes
can be processed quickly, compared with a conventional
parallel Btree structure.

Twe implemented ARIES/IM based on [9], but did not recovery mech-
anism of it because we do not focus on recovery in this paper.

Table 1. Latch matrix

Mode | IS IX S SIX X
IS O O O O
IX o O

S O O

SIX | O

X

2.2 Concurrency Control Methods

Some concurrency control method for the Btree is neces-
sary to guarantee its consistency. Instead of locks, fast and
simple latches are usually used for concurrency control dur-
ing traversing index nodes in a Btree [5]. A latch is a form
of semaphore and the latch manager does not have a dead-
lock detection mechanism. Therefore, concurrency control
for a Btree node should be deadlock free.

In this paper, a latch is assumed to have five modes: IS,
IX, S, SIX, and X as shown in Table 1 [5]. The symbol of
“(O” means that the two modes are compatible.

Because a parallel Btree structure, including the Fat-
Btree, has duplicated nodes a special protocol for the dis-
tributed latch manager is required to satisfy the latch se-
mantics. Requested IS and IX mode latches can be pro-
cessed only on a local PE, whereas the other modes have to
be granted on all the PEs storing the duplicated nodes to be
latches. That is, the IS and IX modes have much smaller
synchronization cost than the S, SIX and X modes, which
require communication between the PEs. The S, SIX, and X
mode latches on remote copies are acquired by using their
pointers. In addition, such latches have to be set in linear
order to avoid dead lock. This means synchronization cost
grows in proportion to the number of PEs related to latches.

The following conditions of the concurrency controls for
parallel Btrees are proposed in [8].

Condition 1. A concurrency control method for parallel
Btrees should satisfy the following conditions:

(a) No concurrency control protocol method for index
nodes, which cause deadlocks, should be used.

(b) Use of S, SIX, and X mode latches on index nodes at
upper levels of the Btree should be avoided as much as
possible.

(c) The entire tree should not be latched, even for a short
duration.

B-OPT [1], OPT-DLOCK [10], and ARIES/IM [9] are
excellent concurrency control methods for a Btree on a sin-
gle machine. However, they do not satisfy Condition 1: B-
OPT does not satisfy Condition 1-(b), OPT-DLOCK does
not satisfy Condition 1-(a), and ARIES/IM does not satisfy

Condition 1-(c). Therefore, these concurrency controls are
unsuitable for parallel Btrees, such as Fat-Btree.

2.3 INC-OPT Protocol

The INC-OPT protocol satisfying Condition 1 has been
proposed [8] as a concurrency control protocol for parallel
Btrees, including Fat-Btree.

The INC-OPT protocol to search for a key is simple. An
IS mode latch is held on the root node initially, then the fol-
lowing steps are performed during traversal in the parallel
Btree:

1. Derive a pointer to a child node by comparing the key
in the parent node.

2. Acquire an IS mode latch on the child, and release the
latch on the parent.

3. Repeat the above steps until the traverse reaches a leaf
node.

The above procedure is usually called latch-coupling [5].
When the traverse arrives at a leaf node, it acquires an S
latch on the leaf and reads data from it.

The INC-OPT protocol for an update consists of two
phases.

The first phase: The traverse reaches a leaf with latch-
coupling with the IX latches. At the leaf, an X latch
is acquired. If the leaf node is not full, the updater up-
dates it. Otherwise, if the leaf node is full it splits, this
latch is once released and it then shifts to the second
phase.

The second phase: The INC-OPT tries to acquire the X
mode latches on the lower two nodes, i.e., the leaf node
and its parent, with the X mode latches. If the parent
node also causes an SMO, it releases all latches and
tries to acquire the X mode latches on the lower three
nodes. This process continues until all the nodes in-
volved by SMOs are protected by X latches.

The INC-OPT protocol is precisely defined in [8].

When an SMO occurs, the INC-OPT may need multiple
restarts. When the root node causes an SMO, the INC-OPT
requires as many phases as the height of the Btree. This
increases the response time of the update operations. In ad-
dition, it decreases the system throughput because of the
multiple X latches used on the index nodes at upper levels.

3 Proposed Protocols

3.1 MARK-OPT Protocol

We propose a new concurrency control protocol for par-
allel Btrees, including Fat-Btree, which marks the lowest

SMO occurrence point during optimistic latch coupling op-
erations. We call this the marking optimistic (MARK-OPT)
protocol, which improves the response time by reducing the
frequency of restarts. In addition, the MARK-OPT pro-
duces high system throughput because of the reduction of
middle phases for spreading an X latch and removes need-
less X latches.

The procedure MARK-OPT uses to search for a key is
identical to INC-OPT, whereas its update consists of the fol-
lowing two phases:

The first phase: The traverse reaches a leaf with latch-
coupling with the IX latches. If the index node is full,
MARK-OPT marks the height of the node from the
root node. Whenever the index node is full, the mark-
ing height is updated one by one. On the leaf, an X
latch is acquired. If the leaf node is not full, the up-
dater updates it. If the leaf node is full, a split occurs
in the leaf, this latch is released immediately and then
the procedure shifts to the second phase.

The second phase: The height of the tree is marked as
in the first phase. MARK-OPT tries to acquire the
X mode latches on the leaf node and the index node
below the height marked in the previous phase. If
the nodes involved by SMOs are not protected by X
latches, it releases all latches and restarts. This pro-
cess continues until all the nodes involved by SMOs
are protected by X latches.

More precisely, the level of node (4) is one for the root
node, and H for the leaf node where H is the height of
the tree. When [denotes the level of the Btree where the
MARK-OPT has to start to use X latches, the variable [is
initially set to H. The height marked during a traverse is de-
noted by m. The MARK-OPT protocol is shown in Figure
2.

Because MARK-OPT decided the range of the X latch,
based on the state of the previous phase obtained by mark-
ing, it may require multiple restarts when SMOs have
spread. However, the number of maximum phases in the
INC-MARK-OPT is H at most as for INC-OPT. MARK-
OPT requires only a restart once in many cases because
SMOs rarely spread. Therefore, MARK-OPT does not re-
quire many restarts like INC-OPT even when SMOs occur
on nodes at upper levels.

The MARK-OPT protocol satisfies Condition 1 in 2.2.
The reasons are:

1. It is deadlock free because it acquires latches top-
down.

2. It does not latch the index nodes with the S, SIX
modes, and does not acquire needless X mode latches
on nodes not relating to SMOs.

[:=H,

I B
T 2 Parent := null; Child := ROOT; h:= 1:m = 1;
3 while /1 < / do begin
4 IX latch on Child, unlatch Parent;
5 if Child is not full then
o 6 m:=h; /* Marking */
K 7 Determine NewChild;
S, 8 Parent := Child; Child := NewChild; h:=h + 1;
iz 9 end;
ﬁ 10 Xlatch on Child and its copies;
= 11 Unlatch Parent;
12 if Child is full then
13 Release all granted latches: / := m;
14 else begin
15 Update;
1 16 Release all granted latches; operation completion;
17 end;
1 18 Parent := null; Child := ROOT; h:=1:m :=1;
19 while 1 </ do begin
20 IX latch on Child, unlatch Parent;
21 if Child is not full then
22 m:=h; /* Marking */
23 Determine NewChild;
24 Parent := Child; Child := NewChild; h:=h + 1;
25 end;
2— 26 X latch on Child and its copies;
s 27 Unlatch Parent;
< 28 Determine NewChild;
g 29 Parent := Child; Child := NewChild; h:=h + 1;
S 30 whileh < H do begin
o 31 X latch on Child and its copies;
= 32 Determine NewChild;
33 Parent := Child; Child := NewChild; 7 :=h + 1;
34 end;
35 if X latch are not sufficient for SMOs then
36 Release all granted latches: / := m; goto 18;
37 else begin
38 Update including the SMOs;
1 39 Release all granted latches; operation completion;

40 end;

Figure 2. The MARK-OPT protocol

3. It never uses a tree latch.

It is easy to prove that the MARK-OPT satisfies the
physical consistency requirement for Btrees. When an up-
dater realizes that it does not acquire all required X latches
for the SMOs, the updater releases all the latches without
modifying any data. Thus, the MARK-OPT essentially fol-
lows the two phase locking (2PL). The 2PL ensures the
physical consistency of the Btree structure for each up-
date [2].

3.2 Extensions of the MARK-OPT

We propose three variations of the concurrency control
protocol, INC-MARK-OPT, 2P-INT-MARK-OPT and 2P-
REP-MARK-OPT, which are extensions of MARK-OPT.

In each protocol only the second phase of the update pro-
tocol is different. MARK-OPT does not change the process
even if the tree structure is changed by other transactions.
On the other hand, the extension protocols look at the state
of the node first latched with the X mode in that phase and
checks the change from the previous phase of a subtree re-
lating to SMO. If the extension protocols judge that the tree
structure has been changed, each protocol executes a dif-
ferent process. The difference in the processes is shown in
Table 2. The columns indicate the process phases, because

Table 2. Comparison of protocols by handling
for a tree structure change between phases

continue shift to
the 2nd phase the 1st phase
non- MARK-OPT
restart / INC-OPT 2P-INT-MARK-OPT
restart INC-MARK-OPT 2P-REP-MARK-OPT

the protocols judges if the tree structure has changed, and
the rows indicate the presence of a restart at that time.

Because these extension protocols mark the height of the
tree as does MARK-OPT, they execute very similar process
as MARK-OPT except for phase change. All of these also
satisfy Condition 1.

3.2.1 INC-MARK-OPT Protocol

The incremental marking optimistic (INC-MARK-OPT)
protocol restarts when it judges that the tree structure has
changed in the second phase. In this case, the height marked
for next phase is not complete because traverse does not
reach a leaf node. However, the INC-MARK-OPT decides
the range of the X latch based on that information.

The second phase of the INC-MARK-OPT protocol for
update is as follows. The INC-MARK-OPT acquires the
X mode latches on the node marked in the previous phase.
If the node is not full, it executes a process similar to the
MARK-OPT to the leaf node. If the node is full, it releases
all latches and restarts. This process continues until all the
nodes involved by SMOs are protected by X latches.

If the INC-MARK-OPT judges that the tree structure
has been changed, it restarts at once. Therefore, the INC-
MARK-OPT does not acquire more needless X latches than
MARK-OPT when SMOs have actually spread. On the
other hand, the INC-MARK-OPT may judge that the tree
structure has changed when SMOs have contracted. In
that case, the INC-MARK-OPT acquires more needless X
latches than MARK-OPT. Moreover, INC-MARK-OPT in-
creases the frequency of restarts compared with MARK-
OPT. However, the number of maximum phases in the INC-
MARK-OPT is H at most the same as MARK-OPT because
it spreads the range of the X latch at each restart.

3.2.2 2P-INT-MARK-OPT Protocol

The 2-phase integrated marking optimistic (2P-INT-MARK-
OPT) protocol performs the latch-coupling with IX latches
below the node when it judges that the tree structure has
changed in the second phase. That is, it returns to the first
phase. Because the MARK-OPT marks the tree state in the

second phase, it shifts to the first phase without the problem
of marking that is incomplete.

The second phase of the 2P-INT-MARK-OPT protocol
for update is as follows. The 2P-INT-MARK-OPT acquires
the X mode latches on the node marked in the previous
phase. If the node is not full, it executes a process simi-
lar to MARK-OPT to the leaf node. If the node is full, it
shifts to the first phase on the node.

If the 2P-INT-MARK-OPT judges that the tree structure
has changed, it shifts to the first phase. Therefore, the 2P-
INT-MARK-OPT decreases the frequency of restarts to a
greater extent than the INC-MARK-OPT and it does not ac-
quire more needless X latches than MARK-OPT. Moreover,
2P-INT-MARK-OPT does not acquire needless X latches
when SMOs have contracted. On the other hand, the 2P-
INT-MARK-OPT may require more restarts than H, the
height of the tree. However, this will happen infrequently.
In the worst case, the 2P-INT-MARK-OPT cannot com-
plete the process but the 2P-INT-MARK-OPT requires only
a small number of restarts because this will not happen in
practice.

3.2.3 2P-REP-MARK-OPT Protocol

The 2-phase repetitive marking optimistic (2P-REP-MARK-
OPT) protocol restarts when it judges that the tree structure
has changed in the second phase. The 2P-REP-MARK-
OPT returns to the first phase after it restarts.

The second phase of the 2P-REP-MARK-OPT proto-
col for update is as follows. The 2P-REP-MARK-OPT ac-
quires the X mode latch on the node marked in the previous
phase. If the node is not full, it executes a process similar to
MARK-OPT to the leaf node. If the node is full, it releases
all latches and it executes the process in the first phase on
the root node.

If the 2P-REP-MARK-OPT judges that the tree struc-
ture has changed, it restarts at once and shifts to the first
phase. Therefore, the 2P-REP-MARK-OPT acquires the
least needless X latches of the proposed protocols although
it increases the frequency of restarts more than any of the
proposed protocols. As well as 2P-INT-MARK-OPT, the
2P-REP-MARK-OPT may require more restarts than H, the
height of the tree. However, the 2P-REP-MARK-OPT re-
quires only a small number of restarts because this is un-
likely to happen in practice.

4 Experiments

To show that MARK-OPT and its extension protocols
are effective, we implemented them on an autonomous disk
system [11] on a blade system, which uses the Fat-Btree,
and evaluated their performance under a number of condi-
tions.

Table 3. Experimental Environment

No. of Nodes: 128 (Storages), 16 (Clients)
CPU: AMD Athlon XP-M 1800+ (1.53GHz)
Memory: PC2100 DDR SDRAM 1GB
Hard Drive: TOSHIBA MK3019GAX
(30GB, 5400rpm, 2.5inch)
OS: Linux 2.4.20
Java VM: Sun J2SE SDK 1.5.0_01 Server VM

Table 4. Parameters used for the experiments

Page size: 4KB
Tuple size: 3KB
Max No. of entries in an index node (fanout): 8
Max No. of tuples in a leaf node: 1

4.1 Experimental Environment

We used an experimental system of the autonomous disk
distributed storage technology we proposed. The experi-
mental system was implemented on a 144 node blade sys-
tem using the Java programming language on Linux. We
used 128 nodes for storing data and 16 nodes as clients
sending requests. A preliminary experiment showed that
the backbone network switch had adequate performance.
The experimental environment is summarized in Table 3.
Table 4 shows the basic parameters we set for the experi-
ments. These parameters were chosen to distinguish clearly
the differences between the protocols.

4.2 Experimental Result

Sixteen clients (thirty-two threads in parallel per blade)
sent requests to PEs containing the Fat-Btree with 256 tu-
ples per PE, for 60 seconds. The access frequencies were
uniform. Figure 3 shows the performance of the six concur-
rency controls as the update ratio changes from 0% through
100%. The solid lines show the performance of the four
proposed protocols, the dotted line shows the performance
of INC-OPT and the dashed line shows the performance of
ARIES/IM. The horizontal and vertical axes are the update
ratio and throughput, respectively.

When the update ratio was 0%, the results of all pro-
tocols were virtually the same. This is because the con-
currency controls used to retrieve data are basically the
same. But, the throughput of ARIES/IM decreases sharply
even though the increase in the ratio of update operations is
small. This is because the cost of global synchronization by
using the tree latches for SMOs caused by the update op-
erations. On the other hand, when the update ratio is low,

5000 —5—MARK-OPT

—*%—INC-MARK-OPT

—
4500 —>¢— 2P-INT-MARK-OPT

2P-REP-MARK-OPT
4 INC-OPT
--@--ARIES/IM

4000 | °

3500

3000 |

pe

2500 |

2000 |

Throughput in Operations per Sec

1500 | e
1000 - a
500 | '.
o
0 20 40 60 80 100

Ratio of Update Operations (%)

Figure 3. Comparison of concurrency control
protocols with changing update ratio

the results of all other protocols were better than that of
ARIES/IM and almost the same. However, the throughput
of the INC-OPT decreases as the update ratio increases. In
contrast to the INC-OPT, the proposed protocols can pro-
vide reasonable throughput although the update ratio in-
creases. The decline in the throughput of the proposed pro-
tocols is much slower than that of INC-OPT even when the
update operations are included. This is because the pro-
posed protocols reduce the frequency of restarts compared
with the INC-OPT when SMOs occur, although the increase
in the update ratio increases the occurrence of SMOs.

In the comparison of the proposed protocols, the
throughput of 2P-REP-MARK-OPT is the highest, when
the update ratio is 100%. Then, the throughput of 2P-INT-
MARK-OPT is next highest and then MARK-OPT is higher
than INC-MARK-OPT. The throughput of the INC-MARK-
OPT is the lowest. Therefore, the 2P-REP-MARK-OPT is
the most effective when many SMOs occur.

5 Conclusion

We propose a new concurrency control, MARK-OPT, for
parallel Btrees, for the shared-nothing environment. When
SMOs occur, the proposed protocol marks the node for
which the X latch should be acquired first and it acquires the
X latch nodes below the marked height after it restarts. We
also propose three extensions of the MARK-OPT protocol.
In addition, we have experimented on an autonomous disk
system implemented on a large-scale blade system to com-
pare the four proposed protocols and the conventional pro-
tocols. The experimental results indicated that the proposed
protocols were effective and 2P-REP-MARK-OPT was the
superior protocol.

In future studies we plan to apply the B-link [7, 6] to the
Fat-Btree. It is known that the B-link can achieve excel-

lent concurrency control. The B-link uses links to chain all
nodes at each level together. In the B-link algorithm, nei-
ther readers nor updaters latch-couple on their way down
to a leaf node and they acquire the latch only on one node
at a time. Moreover, the B-link algorithm does not require
restarts and they complete processing during one traverse.
We need to examine how to apply the B-link to the Fat-
Btree and compare this and the conventional protocols.

Acknowledgments

We thank Dr. Jun Miyazaki of NAIST for his advice
on concurrency control for the Fat-Btree. This work is
partially supported by CREST of JST (Japan Science and
Technology Agency), SRC (Storage Research Consortium),
a Grant-in-Aid for Scientific Research from MEXT Japan
(#16016232) and the Tokyo Institute of Technology 21COE
Program “Framework for Systematization and Application
of Large-Scale Knowledge Resources™.

References

[1] R.Bayer and M. Schkolnick. Concurrency of Operations on
B-trees. Acta Inf., 9(1):1-21, 1977.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[3] G.Copeland, W. Alexander, E. Boughter, and T. Keller. Data
Placement in Bubba. In Proc. of ACM SIGMOD’88, pages
99-108, 1988.

[4] S. Ghandeharizadeh and D. J. DeWitt. Hybrid-Range Par-
titioning Strategy: A New Declustering Strategy for Multi-
processor Database Machines. In Proc. of VLDB’90, pages
481-492, 1990.

[5] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1992.

[6] V. Lanin and D. Shasha. A Symmetric Concurrent B-tree
Algorithm. In Proc. of FICC’86, pages 380-389, 1986.

[7] P. L. Lehman and S. B. Yao. Efficient Locking for Con-
current Operations on B-trees. ACM Trans. Database Syst.,
6(4):650-670, 1981.

[8] J. Miyazaki and H. Yokota. Concurrency Control and Per-
formance Evaluation of Parallel B-tree Structures. [EICE
Trans. Inf. Syst., E85-D(8):1269-1283, 2002.

[9] C. Mohan and F. Levine. ARIES/IM: An Efficient and
High Concurrency Index Management Method Using Write-
Ahead Logging. In Proc. of ACM SIGMOD’92, pages 371—
381, 1992.

[10] V. Srinivasan and M. J. Carey. Performance of B-Tree
Concurrency Control Algorithms. In Proc. of ACM SIG-
MOD’91, pages 416-425, 1991.

[11] H. Yokota. Autonomous Disks for Advanced Database Ap-
plications. In Proc. of DANTE’99, pages 435-442, 1999.

[12] H. Yokota, Y. Kanemasa, and J. Miyazaki. Fat-Btree: An
Update-Conscious Parallel Directory Structure. In Proc. of
ICDE’99, pages 448-457, 1999.

