
論文 / 著書情報
Article / Book Information

論題(和文)

Title(English) SLAX: An Improved Leaf-Clustering Based Approximate XML Join
Algorithm for Integrating XML Data at Subtree Classes

著者(和文) 梁 文新, 横田 治夫

Authors(English) Wenxin Liang, Haruo Yokota

出典(和文) 情報処理学会論文誌データベース, Vol. 47, No. SIG 8 (TOD30), pp. 47-
57

Citation(English) IPSJ Transaction on Database, Vol. 47, No. SIG 8 (TOD30), pp. 47-57

発行日 / Pub. date 2006, 6

権利情報 / Copyright ここに掲載した著作物の利用に関する注意: 本著作物の著作権は（社
）情報処理学会に帰属します。本著作物は著作権者である情報処理学
会の許可のもとに掲載するものです。ご利用に当たっては「著作権法
」ならびに「情報処理学会倫理綱領」に従うことをお願いいたします
。
 The copyright of this material is retained by the Information Processing
Society of Japan (IPSJ). This material is published on this web site with
the agreement of the author (s) and the IPSJ. Please be complied with
Copyright Law of Japan and the Code of Ethics of the IPSJ if any users
wish to reproduce, make derivative work, distribute or make available to
the public any part or whole thereof.

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Vol. 47 No. SIG 8(TOD 30) IPSJ Transactions on Databases June 2006

Regular Paper

SLAX : An Improved Leaf-Clustering Based Approximate XML

Join Algorithm for Integrating XML Data at Subtree Classes

Wenxin Liang† and Haruo Yokota†,††

XML is widely applied to represent and exchange data on the Internet. However, XML
documents from different sources may convey nearly or exactly the same information but may
be different on structures. In previous work, we have proposed LAX (Leaf-clustering based
Approximate XML join algorithm), in which the two XML document trees are divided into
independent subtrees and the approximate similarity between them are determined by the tree
similarity degree based on the mean value of the similarity degrees of matched subtrees. Our
previous experimental results show that LAX, comparing with the tree edit distance, is more
efficient in performance and more effective for measuring the approximate similarity between
XML documents. However, because the tree edit distance is extremely time-consuming, we
only used bibliography data of very small sizes to compare the performance of LAX with that
of the tree edit distance in our previous experiments. Besides, in LAX, the output is oriented
to the pair of documents that have larger tree similarity degree than the threshold. Therefore,
when LAX is applied to the fragments divided from large XML documents, the hit subtree
selected from the output pair of fragment documents that has large tree similarity degree might
not be the proper one that should be integrated. In this paper, we propose SLAX (Subtree-
class Leaf-clustering based Approximate XML join algorithm) for integrating the fragments
divided from large XML documents by using the maximum match value at subtree classes.
And we conduct further experiments to evaluate SLAX, comparing with LAX, by using both
real large bibliography and bioinformatics data. The experimental results show that SLAX
is more effective than LAX for integrating both large bibliography and bioinformatics data
at subtree classes.

1. Introduction

The Extensible Markup Language (XML) is
widely applied to represent and exchange data
on the Internet, because it can represent differ-
ent kinds of data from multiple sources. Nowa-
days more and more data, especially bioin-
formatics such as Swiss-Prot 15), TrEMBL 17)

and bibliography data such as DBLP 22) and
ACM SIGMOD Record 1), are published and
exchanged by XML on the Internet. However,
XML documents from different data sources
might contain nearly or exactly the same infor-
mation but might be constructed by different
structures. Besides, even the two XML docu-
ments convey the same contents, both of them
may have some extra information what the
other does not do. Therefore, it becomes im-
portant that an algorithm can efficiently mea-
sure the similarity between XML documents for
integrating such data sources so that the users
can conveniently access and acquire more com-

† Department of Computer Science, Graduate School
of Information Science and Engineering, Tokyo In-
stitute of Technology

†† Global Scientific Information and Computing Cen-
ter, Tokyo Institute of Technology

plete information.
The Document Type Descriptor (DTD)

is recognized as a helpful tool to detect
the structural information from XML doc-
uments 2),6),7),13). However, even if XML
documents have the same DTDs, they may
not have identical tree structures because of
the repeating and optional elements and at-
tributes 9),10),13). Figure 1 shows an ex-
ample of two XML documents (sample frag-
ments from the XML files of Swiss-Prot 20)

and TrEMBL 21), respectively) with very sim-
ilar DTDs. Although these two documents
are structurally different due to the repeating
and optional elements, they express very simi-
lar information. Besides, each of the document
has some information what the other does not
do. For instance, comment in Fig. 1 (a); and
evidence in Fig. 1 (b).

The tree edit distance is widely used as an ef-
fective metric for measuring the structural simi-
larity between XML documents 9),13). However,
it is a very expensive operation; in the worst
case, the time complexity is O(n4) for the doc-
ument of size n, where n is the number of the
nodes of the document.

In previous work 11), we have proposed LAX

47

48 IPSJ Transactions on Databases June 2006

(a)

(b)

Fig. 1 Example XML documents.

(Leaf-clustering based Approximate XML join
algorithm), in which the two XML document
trees are divided into subtrees representing in-
dependent information units, and the output
is oriented to the pair of documents that has
larger tree similarity degree than the user-
defined threshold. We have also proposed an
effective algorithm for segmenting XML docu-
ments into independent subtrees for LAX. We
have shown that LAX is more efficient in per-
formance comparing to the tree edit distance,
because it is an O(n2) operation for the docu-
ment of size n in the worst case. Because the
tree edit distance is extremely time-consuming,
we only used bibliography data of very small
sizes to compare the performance of LAX with
that of the tree edit distance in our previous
experiments. In addition, in order to com-
pare with the work based on the tree edit dis-
tance 9),10), the output of LAX is oriented to
the pair of documents that have larger tree sim-
ilarity degree (mean value of the similarity de-
grees of matched subtrees) than the threshold.
The large XML documents sometimes can not
be loaded into the main memory, they must
be divided into small fragments. In this case,
the target subtrees are distributed in each frag-
ment document. Therefore, when LAX is ap-
plied to such fragment documents, the hit sub-
trees selected from the output pair of fragment
documents that has large tree similarity degree
might not be the proper one that should be in-
tegrated.

In this paper, we propose SLAX (Subtree-

class Leaf-clustering based Approximate XML
join algorithm) to integrate fragments divided
from large XML documents by using the max-
imum match value at subtree classes. We con-
duct further experiments to compare SLAX
with LAX on the performance and effectiveness
by using both large real bibliography and bioin-
formatics data. The experimental results indi-
cate that the precision of subtree matching us-
ing SLAX is twice larger than that using LAX
for bibliography data. And SLAX is useful and
valuable for people to acquire similar proteins
belonging to the same species, organisms, and
so on, even if the two XML documents do not
contain exactly the same proteins.

The rest of this paper is organized as follows.
Section 2 briefly introduces the work related
to the paper and the requirements for the is-
sues of measuring approximate similarity be-
tween XML documents. In Section 3, we in-
troduce the basic knowledge of LAX. Section 4
describes the problem of LAX when it handles
fragments divided from large XML documents
and proposes SLAX for solving this problem.
In Section 5, we conduct experiments to com-
pare SLAX with LAX by using both large real
bioinformatics and bibliography data. In the
end, Section 6 concludes the paper and outlines
the future work.

2. Related Work and Requirements

A well formed XML document can be parsed
into an ordered labeled tree 19). The tree struc-
ture represents the nesting of its elements, and
node labels record the contents of the elements
by element tags, attribute names, attribute val-
ues and PCDATA values.

Many researches have been done to solve the
problem of measuring the edit distance between
ordered labeled trees 3)∼5),8),12),14),16),18),23)∼25).
The edit distance between two ordered labeled
trees is defined as the minimum cost edit oper-
ations (insertions, deletions and substitutions)
required to transform one tree to another. It
can be figured out by a mapping between the
nodes of the two trees 25). The tree edit dis-
tance is regarded as an effective metric for mea-
suring the structural similarity in XML docu-
ments 8),9),13). However, its computational cost
is extremely expensive; in the worst case, it is
an O(n4) operation for the document of size n.
Thus, it is of difficulty for the tree edit distance
to handle the XML documents of large sizes.

In order to avoid the expensive tree edit

Vol. 47 No. SIG 8(TOD 30) SLAX : An Improved Leaf-Clustering Based Approximate XML 49

distance operation as much as possible, S.
Guha, et al. proposed the lower and up-
per bound as inexpensive substitutions for
the tree edit distance operation 9). However,
when the upper bound is greater than the
threshold distance τ and meanwhile the lower
bound is less than τ , the tree edit distance
will still must be calculated. Therefore, we
need a more efficient metric for measuring
the approximate similarity between XML doc-
uments. As the matter of fact, many real
XML documents are constructed by repeating
elements, entry in the uniprot sprot.xml 20)

and uniprot tremb.xml 21) for example. Such
kind of XML documents can be segmented
into subtrees representing independent units by
rooting the subtrees at the repeating elements.
The approximate similarity between the well-
segmented documents can be effectively deter-
mined by computing the similarity degree based
on the clustered leaf nodes of each pair of sub-
trees even without considering the structural
and semantic heterogeneity.

3. Introduction of LAX

3.1 Overview
In previous work 11), we have proposed LAX

for evaluating the approximate similarity be-
tween XML documents. In LAX, the two XML
documents to be joined are segmented into
subtrees representing independent information
units. And the approximate similarity between
them are determined by the tree similarity de-
gree that is the mean value of the similarity
degrees of the matched subtrees.
Notation. Let T1 and T2 be two XML doc-
ument trees. Let T1 be the base tree, and T2

be the target one. Assume T1 and T2 are seg-
mented into k1 and k2 sub-trees t1i (1 ≤ i ≤ k1)
and t2j (1 ≤ j ≤ k2), respectively.

The subtree similarity degree between t1i and
t2j , SS(t1i, t2j) is defined by Equation (1) as the
percentage of the number of matched leaf nodes
(the pair of leaf nodes that has the same PC-
DATA value) out of the number of leaf nodes in
the base subtree t1i, where n and n1i denote the
number of matched leaf nodes and the number
of leaf nodes in the base subtree t1i.

SS(t1i, t2j) =
n

n1i
× 100 (%) (1)

The matched subtree, TM [i] is defined as the
pair of subtrees that has the maximum subtree
similarity degree in one join loop; that is, the
similarity degree of TM [i], SM [i] can be calcu-

lated as follows.

SM [i] = Maxk2
j=1(SS(t1i, t2j)) (2)

In the ith join loop, the matched subtree
TM [i] is a hit subtree, iff SM [i] ≥ T (0 < T ≤ 1),
where T is the user defined threshold for the
output subtrees.

The tree similarity degree between T1 and T2,
ST (T1, T2) is determined by Equation (3) based
on the mean value of the similarity degrees of
matched subtrees.

ST (T1, T2) =
∑k1

i=1 SM [i]
k1

× 100 (%) (3)

3.2 Segmentation Algorithm
Many real XML documents are constructed

by repeating elements, and they can be divided
into independent subtrees at the repeating ele-
ments. However, there might be many different
repeating elements with the same tag names
in different levels. For instance, entry and
name in Fig. 1 (a). Therefore, it is not an easy
task to segment the XML document tree into
subtrees at the proper positions. In previous
work 11), we have proposed an effective algo-
rithm for segmenting XML document trees, in
which the spot for segmentation is determined
by the weighting factor w. For a candidate el-
ement E(n, d), where n denotes the number of
candidate elements among its children, and d
represents the the distance to its furthest de-
scendant. The weighting factor w can be calcu-
lated by the following equation,

w = n × dθ (0 < θ ≤ 1) (4)

where, θ is an adjustable constant.
3.3 Join Process
Let S1 and S2 be two XML data sources. As-

sume each document d1 ∈ S1 and d2 ∈ S2 are
parsed into XML document trees T1 and T2.
Let T1 and T2 be segmented into k1 and k2 sub-
trees t1i and t2j . Given a user-defined threshold
τ , the join process of LAX is illustrated by Al-
gorithm LAX shown in Fig. 2.

3.4 Comparison with Tree Edit Dis-
tance

For the document of size n, in the worst case,
LAX is an O(n2) operation while the tree edit
distance is an O(n4) one. Our previous experi-
mental results indicate that as the size of docu-
ment increases, LAX becomes overwhelmingly
faster relative to the tree edit distance 11). As
for two XML documents with different DTDs
that have the same number of nodes, the tree

50 IPSJ Transactions on Databases June 2006

Algorithm LAX {
Input: XML data source S1 and S2

Output: Pairs of XML documents (d1, d2)

for each d1 ∈ S1 {
parse d1 into T1;

segment T1 into k1 subtrees;

for each d2 ∈ S2 {
parse d2 into T2;

segment T2 into k2 subtrees;

calculate ST (T1, T2);

}
if(ST (T1, T2) ≥ τ) {

output (d1, d2);

}
}

}

Fig. 2 Algorithm LAX.

edit distance of them will not increase much
when the PCDATA values of the leaf nodes
change. While in LAX, the tree similarity de-
gree will change in a large scale as the values of
the leaf nodes change. Our previous experimen-
tal results show that LAX can effectively dis-
tinguish the similarity differences between XML
documents even the tree edit distances of them
are almost the same 11).

4. SLAX

4.1 Problem of LAX
In this paper, we just use the original real

large XML documents without storing them
into RDBs. When the XML documents are too
large to be loaded into the main memory, they
must be divided into small fragments. In this
case, the target subtrees are distributed in each
fragment document. Besides, in LAX, the out-
put is oriented to the pair of documents that
have larger tree similarity degree (mean value
of the similarity degrees of matched subtrees)
than the threshold. Therefore, when LAX is
applied to such fragment documents, the hit
subtrees selected from the output pair of frag-
ment documents that has large tree similarity
degree might not be the proper one that should
be integrated.
Example 1. For the base document tree TB1,
and the target ones TT1 and TT2 divided from
a large XML document tree TT in Fig. 3, the
tree similarity degrees ST (TB1, TT1) = 66.7%
and ST (TB1, TT2) = 50%. Assume the thresh-
old for the output 0.5 < τ ≤ 0.667, and the
threshold for the hit subtree T ≤ 0.667. Because
ST (TB1, TT1) = 66.7% > τ > ST (TB1, TT2) =

TB1

tB11 tB12

(a) Base document tree

TT1 TT2

tT11 tT12 tT21 tT22

(b) Target document tree

Fig. 3 Problem of LAX.

0.5, the document tree pair (TB1, TT1) will be
output. Therefore, the subtree pair (tB12, tT12)
(SS(tB12, tT12) = 66.7% > T) will be se-
lected as the hit subtree by LAX. However,
the most proper subtree pair is actually the
(tB12, tT21), because SS(tB12, tT21) = 100% >
SS(tB12, tT12) = 66.7%.

4.2 Key Definitions for SLAX
Before we propose the improved algorithm

SLAX to solve the problem mentioned in Sec-
tion 4.1, we present the following notations and
definitions.
Notation. Let SB and ST be two XML data
sources, where B denotes base and T denotes
target. Assume each document dBm ∈ SB (1 ≤
m ≤ K) and dTn ∈ ST (1 ≤ n ≤ L) are parsed
into XML document trees TBm (1 ≤ m ≤ K)
and TTn (1 ≤ n ≤ L). Let TBm and TTn be
segmented into kB and kT subtrees tBmi (1 ≤
i ≤ kB) and tTnj (1 ≤ j ≤ kT).
Definition 1 (Match Value). The match
value M[n] for the subtree tBmi and each tar-
get tree TTn (1 ≤ n ≤ L) is defined as the the
following equation.

M [n] = MaxkT
j=0(SS(tBmi, tTnj)) (5)

Definition 2 (Maximum Match Value).
The maximum match value MM [i] for the sub-

Vol. 47 No. SIG 8(TOD 30) SLAX : An Improved Leaf-Clustering Based Approximate XML 51

Algorithm SLAX {
Input: XML data source SB and ST

Output: Pairs of subtrees (tB , tT)

parse SB into TB ;

parse ST into TT ;

divide TB into K fragment trees TBm;

for (m = 1 to K) {
segment TBm into kB subtrees;

for (i = 1 to kB) {
MM [i] = 0;//Maximum match value for each base

subtree tBmi

divide TT into L fragment trees TT n;

for (n = 1 to L) {
segment TT n into kT subtrees;

M [n]=0;//Match value for each target fragment
tree TT n

for (j = 1 to kT) {
calculate SS(tBmi, tT nj);

M [n] = Max(SS(tBmi, tT nj), M [n]);

}
if(M [n] ≥ MM [i]) {

MM [i] = Max(M [n], MM [i]);

N = n;//Record the index of the target fragment
tree

}
}
if (MM [i] ≥ T){

output(tBmi,tT Nj);

}
}

}
}

Fig. 4 Algorithm SLAX.

tree tBmi is defined as following equation.
MM [i] = MaxL

n=0(M [n]) (6)
Definition 3 (Matched Tree). The matched
tree TMi for each subtree tBmi is defined as the
target tree TTn that has the maximum M [n].
Definition 4 (Matched Pair). The matched
pair Pi for the subtree tBmi is defined as the
pair of subtrees that has the maximum match
value.
Definition 5 (Hit Pair). Given a threshold
T (0 < T ≤ 1), the matched pair Pi is a hit
pair PHi, if the maximum match value of Pi,
MM [i] ≥ T . The hit pair PHi should be output
as the final result.

4.3 Algorithm SLAX
Let SB and ST be two XML data sources, and

each dBm ∈ SB and dTn ∈ ST be parsed into
XML document trees TBm and TTn. Assume
TBm and TTn are segmented into kB and kT

subtrees tBmi and tTnj . Given a user-defined
threshold T , the algorithm SLAX is illustrated
by Fig. 4.

Example 2. For the base tree TB1 and the tar-
get ones TT1 and TT2 in Fig. 3, The matched
trees TM1 and TM2 for the subtree TB11 and
TB12 are TT1 and TT2, respectively. And the
matched pairs P1 and P2 of the subtree TB11 and
TB12 are (tB11, tT11) and (tB12, tT21), respec-
tively. Assume T < 0.667, both of the matched
P1 and P2 are the hit pairs and should be output
as the final results.

4.4 Comparison with LAX
The main differences between the improved

algorithm SLAX and the original one LAX are
summarized as follows:
• Application Object The application ob-

ject for LAX is to measure the approxi-
mate similarity between XML documents,
while that for SLAX is to detect the sub-
trees that represent the same or similar in-
formation in XML documents from differ-
ent sources, so that the XML documents
can be integrated at subtree classes.

• Join Base and Target The join base and
target for LAX are oriented to XML docu-
ments, while those for SLAX are subtree-
oriented.

• Basis for Subtree Matching In LAX,
the subtree matching must be selected from
the pair of XML documents that has larger
tree similarity degree than the threshold.
While in SLAX, the subtree matching is di-
rectly based on the maximum match value
for the base subtree and the target one.

5. Experimental Evaluation

In our previous experiments 11), we have
compared the performance of LAX with the
tree edit distance for measuring the approxi-
mate similarity between XML documents. Be-
cause the tree edit distance is extremely time-
consuming, we only used very small bibliogra-
phy XML documents; the mean size of the frag-
ment files of SIGMOD Record 1) and DBLP 22)

we used was 4.32 KB (about 200 nodes). In
this paper, we conduct experiments to compare
SLAX with LAX by using different types of
large XML data. We should have compared
SLAX and LAX with the tree edit distance.
However, the tree edit distance is too time-
consuming to be applied to the large data. But
anyway, our previous experimental results have
shown that LAX is more efficient and effective
for measuring the approximate similarity be-
tween XML documents than the tree edit dis-
tance even for small data 11).

52 IPSJ Transactions on Databases June 2006

In order to observe and compare how effec-
tively SLAX and LAX determine the matched
subtree by using the maximum match value and
the tree similarity degree, respectively, we de-
fine the precision of subtree matching, P as fol-
lows.
Definition 6 (Precision of Subtree Match-
ing). The precision of subtree matching (P)
is the percentage of the number of correctly
matched subtree (Nc) out of the total number
of subtrees (N)in the base document as the fol-
lowing equation.

P =
Nc

N
× 100(%) (7)

We use both real bibliography and bioinfor-
matics data that are more than 100 times larger
of sizes to evaluate SLAX and LAX in the fol-
lowing aspects.
• How do the document size and the number

of the segmented subtrees impact the exe-
cution time of SLAX and LAX for different
types of large XML data?

• What is the difference in the characteris-
tic and performance for SLAX and LAX
to integrate different types of large XML
data?

• What is the difference in the precision of
subtree matching for bibliography docu-
ments using the maximum match value and
the tree similarity degree, respectively?

5.1 Data Used
5.1.1 Bibliography Data
The main characteristic of the bibliography

document is that the number of leaf nodes
of each segmented subtree is small. A bibli-
ography XML document can be generally di-
vided into a large number of subtrees repre-
senting a literature item such as an article and
a book. The size of each subtree in the bib-
liography document is quite small. For ex-
ample, the mean number of leaf nodes of an
segmented subtree in SigmodRecord.xml 1) is
only 5.8. In our experiments, we use Sigmod-
Record.xml (482KB, about 20,000 nodes) and
955 fragments divided from DBLP.xml 22). The
size of each fragment is 300KB (about 15,000
nodes).

5.1.2 Bioinformatics Data
Comparing with the bibliography data, bioin-

formatics data, such as protein data, contains a
lot of information in each entry. Therefore, the
size of each segmented subtree becomes much
larger in the bioinformatics data. For instance,
the mean number of leaf nodes of a 3MB frag-

Table 1 Experimental environment.

CPU AMD Athlon 64 3500+ 2.20GHz
Memory 1.0GB

OS MS Windows XP Professional
Programming
Environment Sun JDK 1.4.2

Table 2 Precision of subtree mathcing for
bibliography data.

Nc Ni P
LAX 33 67 33%
SLAX 71 29 71%

ment of uniprot sprot.xml 20) is 42.4.
Because the original protein XML documents

are too big to be loaded into the main mem-
ory, we divide the uniprot sprot.xml 20) and
uniprot trembl.xml 21) into fragment files. The
size of each fragment of uniprot sprot.xml 20)

is 3 MB (about 80,000 nodes), and that of
uniprot trembl.xml 21) is 1MB (about 25,000
nodes).

5.2 Experimental Environment
The experiments have been done under the

environment shown in Table 1.
5.3 Experimental Results
5.3.1 Bibliography Data
For the bibliography data, we take the Sig-

modRecord.xml as the base document, and
all the 955 fragments of DBLP.xml, named
DBLP1.xml-DBLP955.xml as the target ones.
The number of segmented subtrees of the Sig-
modRecord.xml is 1504, and the mean number
of those of the DBLP fragment files is 640. The
mean execution time for handling each pair of
documents by SLAX is 3.77 seconds.

We randomly sample 100 base subtrees from
SigmodRecord.xml to compose a document,
named sigmod.xml, using the same DTD as Sig-
modRecord.xml. Then, we join the sigmod.xml
with the 955 framents of DBLP.xml by using
the tree similarity degree and maximum match
value, respectively. The number of correctly
matched subtrees (Nc), the number of incor-
rectly matched subtrees (Ni) and the precision
of subtree mathcing (P) using LAX and SLAX
are shown in Table 2.

Here we show a real example of mismatching
using LAX. We use SigmodRecord.xml as the
base document, and randomly choose 40 frag-
ments of DBLP.xml as the target ones. Fig-
ure 5 shows the match values for the sam-
ple subtree and each fragment of DBLP.xml,
and Fig. 6 shows the source code of a sub-

Vol. 47 No. SIG 8(TOD 30) SLAX : An Improved Leaf-Clustering Based Approximate XML 53

Fig. 5 Match values for the sample subtree and
dblp1.xml-dblp40.xml.

Fig. 6 Sample subtree from sigmod.xml.

Fig. 7 The matched subtree selected by SLAX from
dblp24.xml.

tree sampled from SigmodRecord.xml. The
matched subtree for the sample subtree is se-
lected by SLAX from dblp24.xml because of
the maximum match value, and its source code
is shown in Fig. 7. It is evident that the
matched subtree determined by SLAX repre-
sents exactly the same article as the sample
subtree. Figure 8 shows the tree similarity de-
grees for SigmodRecord.xml and each fragment
of DBLP.xml. Because the tree similarity de-
gree between dblp14.xml and SigmodRecord is
the largest among the 40 fragments, the number
of hit pairs in dblp14.xml is larger than those
in dblp24.xml; that is the number of similar
subtrees in dblp14.xml is larger than that in
dblp24.xml. However, the source code in Fig. 9
shows that the matched subtree determined by
LAX from dblp14.xml is not exactly the same

Fig. 8 Tree similarity degrees for SigmodRecord.xml
and dblp1.xml-dblp40.xml.

Fig. 9 The matched subtree selected by LAX from
dblp14.xml.

Table 3 The number of subtrees and the mean
execution time.

trembl1 trembl2 trembl3 trembl4 trembl5

N 324 349 389 414 327
TS 3.53s 3.61s 3.70s 3.74s 3.55s
TL 3.57s 3.69s 3.72s 3.75s 3.60s

article as the sample one but written by the
same authors.

5.3.2 Bioinformatics Data
In order to learn how the document

size and the number of segmented sub-
trees impact the excution time for SLAX
and LAX, we randomly choose 5 fragments
of uniprot trebml.xml, named trembl1.xml-
trembl5.xml, and join them with 40 frag-
ments of uniprot sprot.xml, named sprot1.xml-
sport40.xml. N , TS and TLin Table 3 indicate
the number of subtrees in trembl1-5.xml and
the mean execution time to join a pair of frag-
ment files by SLAX and LAX, respectively.

Because the documents from TrEMBL and
Swiss-Prot do not contain exactly the same pro-
tein information, it is of difficulty to quanti-
tively define the precision of subtree matching
for the protein data without expert knowledge.
Therefore, in this paper we only conduct exper-
iments to verify if our algorithm can find the
similar protein from the target fragments for a

54 IPSJ Transactions on Databases June 2006

Fig. 10 Base subtree sampled from trembl4.xml.

Fig. 11 Match values for trembl4.xml and the
sprot1.xml-sprot40.xml.

sample protein in the base fragment.
We choose trembl4.xml as the base docu-

ment and sprot1.xml-sprot40.xml as the tar-
get ones. The number of segmented subtrees
of trembl4.xml is 414 and the mean number
of those of sprot1-40.xml is 387. Figure 10
shows the source code of the base subtree sam-
pled from trembl4.xml, and Fig. 11 indicates
the match values for the sample subtree and
sprot1-40.xml. The matched subtree for the
sample one will be selected from sprot31.xml
by SLAX. Figure 12 shows the source code
of the matched subtree determined by SLAX.
From Fig. 10 and Fig. 12, we can observe that
the matched subtree pair determined by SLAX
represents very similar proteins belonging to
the same organism. In respect of LAX, the tree
similarity degrees for trembl4.xml and sprot1-
40.xml are shown in Fig. 13. Figure 14 shows
the source code of the matched subtree for the
sample one selected by LAX from sprot22.xml.
It is apparent that the matched subtree de-
termined by LAX is totally a different pro-
tein corresponding to the base one. Although

Fig. 12 The Matched subtree selected by SLAX from
sprot31.xml.

Fig. 13 Tree similarity degree for trembl4.xml and
sprot1.xml-sprot40.xml.

the matched pairs for protein data selected by
SLAX sometimes may not denote exactly the
same proteins, it is still helpful and valuable for
people to obtain the group of proteins belong-
ing to the same species, organisms, and so on.

5.4 Discussion and Comparison
According to the results of the experiments,

we outline the following discussions and com-
parisons to summarize the characteristics and
the differences of SLAX and LAX when they
handle different types of large XML documents.
• From Table 3 and Fig. 15, we can observe

that SLAX is slightly faster than LAX. Be-
sides, the execution time for joining a pair
of documents for both SLAX and LAX in-
creases tardily as the number of segmented
subtrees increases. With regard to the
impact of document sizes, the integration
of large documents might be faster than

Vol. 47 No. SIG 8(TOD 30) SLAX : An Improved Leaf-Clustering Based Approximate XML 55

Fig. 14 The Matched subtree selected by LAX from
sprot22.xml.

Fig. 15 Execution time for joining a pair of
bioinformatics fragments.

that of small ones. For example, the total
mean size of SigmodRecord.xml and DBLP
fragment files is about 0.8 MB and that of
the protein fragment files is about 4.0 MB.
However, the mean time for handling the
protein data by SLAX is 3.63 seconds while
that for processing the bibliography data is
3.77 seconds. It takes less time for SLAX
to handle the protein data, because the
number of segmented subtrees of bibliog-
raphy data is much larger than that of the
protein data.

• We can easily find the maximum peak
(maximum match value) from Fig. 5 and
Fig. 11 for both bibliography and bioin-
formatics data. While it is of difficulty
to discriminate the max peak from Fig. 8
and Fig. 13, because there are many peaks
that have very close tree similarity degrees
with the maximum one. Therefore, the
most proper matched subtree sometimes

does not exist in the maximum peak but
other peaks having the close value to the
maximum one.

• For the bibliography data, the similarity
degree of subtrees with smaller number of
leaf nodes are easier to be the same be-
cause of the smaller n1i in Eq. (1). There-
fore, it may happen to get multiple subtrees
that have the same similarity degree. On
the other hand, the maximum match value
for the hit subtrees for bioinformatics data
might be small because of the large number
of leaf nodes in each subtree.

• SLAX can more precisely detect the proper
matched subtree for integrating the frag-
ments divided from large XML documents
than LAX. For the bibliography data,
SLAX can effectively detect the matched
subtree that contains exactly the same in-
formation as the base one. The precision
of subtree matching using SLAX is twice
larger than that using LAX. For the pro-
tein data, SLAX is useful and valuable for
people to acquire similar proteins belonging
to the same species, organisms, and so on,
even the two XML documents do not con-
tain exactly the same proteins. Therefore,
we consider that SLAX is applicable and
effective for integrating both large bibliog-
raphy and bioinformatics data at subtree
classes.

6. Conclusions and Future Work

As more and more data are increas-
ingly represented and exchanged by XML on
the Internet, a method that can efficiently
measure the approximate similarity between
XML documents for integrating multiple XML
data sources becomes more important. We
have proposed LAX (Leaf-clustering based
Approximate XML join algorithm) in previous
work, in which the two XML document trees
are segmented into subtrees representing inde-
pendent units, and the output is oriented to the
pair of documents that has larger tree similarity
degree than the user-defined threshold.

In this paper, we have proposed SLAX by us-
ing the maximum match value for integrating
the fragments divided from large XML docu-
ments at subtree classes. We have done experi-
ments to evaluate SLAX, comparing with LAX,
by using both real large bibliography and bioin-
formatics data. Our experimental results indi-
cate that the precision of subtree matching us-

56 IPSJ Transactions on Databases June 2006

ing SLAX is twice larger than that using LAX
for bibliography data. And SLAX is useful and
valuable for people to acquire similar proteins
belonging to the same species, organisms, and
so on, even if the two XML documents do not
contain exactly the same proteins. Therefore,
We consider that SLAX performs more effec-
tively than LAX for integrating both large bib-
liography and bioinformatics data at subtree
classes.

Due to the limitation of the main memory,
we plan to do further experiments for evaluat-
ing LAX and SLAX by using different types of
large XML data stored RDBs. We are also go-
ing to improve the segmentation algorithm for
handling more complex XML data. Besides,
the semantic heterogeneity is to be taken into
account to improve the precision of our algo-
rithms.

Acknowledgments This work was par-
tially supported by the Grant-in-Aid for Sci-
entific Research of MEXT Japan #16016232,
by the CREST of JST (Japan Science and
Technology Agency), and by the TokyoTech
21COE Program “Framework for Systematiza-
tion and Application of Large-Scale Knowledge
Resources”.

References

1) ACM SIGMOD Record in XML. Available at
http://www.acm.org/sigmod/record/xml/

2) Arenas, M. and Libkin, L.: A Normal Form
for XML Documents, ACM Transactions on
Database Systems, Vol.29, No.1, pp.195–232
(March 2004).

3) Chawathe, S. and Garacia-Molina, H.: Mean-
ingful Change Detection in Structured Data,
Proc. ACM SIGMOD 1997, pp.26–37 (1997).

4) Chawathe, S., Tajaraman, A., Garacia-Molina,
H. and Widom, J.: Change Detection in Hier-
archically Structured Information, Proc. ACM
SIGMOD 1996, pp.493–504 (1996).

5) Cobena, G., Abiteboul, S. and Marian, A.:
Detecting Changes in XML Documents, Proc.
ICDE 2002, pp.41–52 (2002).

6) Ethier, K. and Abel, S.: Freely Available
Structures: XML Document Type Definitions
You Can Use Today, Free Software Magazine,
Issue 6, pp.1–4 (July 2005).

7) Fan, W. and Libkin, L.: On XML Integrity
Constraints in the Presence of DTDs, Proc.
PODS’01, pp.114–125 (2001).

8) Garofalakis, M. and Kumar, A.: Correlating
XML data streams using tree-edit distance em-
beddings, Proc. PODS’03, pp.143–154 (2003).

9) Guha, S., Jagadish, H.V., Koudas, N.,
Srivastava, D. and Yu, T.: Approximate XML
Joins, Proc. ACM SIGMOD 2002, pp.287–298
(2002).

10) Guha, S., Koudas, N., Srivastava, D. and
Yu, T.: Index-Based Approximate XML Joins,
Proc. ICDE 2003, pp.708–710 (2003).

11) Liang, W. and Yokota, H.: LAX : An Efficient
Approximate XML Join Based on Clustered
Leaf Nodes for XML Data Integration, Proc.
BNCOD 2005, Springer LNCS 3567, pp.82–97
(July 2005).

12) Marian, A., Abiteboul, S., Cobena, G. and
Mignet, L.: Change-Centric Management of
Versions in an XML Warehouse, Proc. 27th
VLDB, pp.581–590 (2001).

13) Nierman, A. and Jagadish, H.V.: Evaluat-
ing Structural Similarity in XML Documents,
Proc. WebDB 2002, pp.61–66 (2002).

14) Selkow, S.: The Tree-to-tree Editing Problem,
Information Processing Letters, Vol.6, No.6,
pp.184–186 (Dec. 1977).

15) Swiss-Prot. http://www.ebi.ac.uk/swissprot/
16) Tai, K.-C.: The Tree-to-Tree Correction Prob-

lem, J. ACM, Vol.26, No.3, pp.422–433 (1979).
17) TrEMBL. http://www.ebi.ac.uk/trembl/
18) Wang, Y., DeWitt, D.J. and Cai, J.: X-Diff:

An Effective Change Detection Algorithm for
XML Documents, Proc. ICDE 2003, pp.519–
530 (March 2003).

19) World Wide Web Consortium (W3C). The
Document Object Model (DOM). http://www.
w3.org/DOM/

20) XML Version of Swiss-Prot. Avaibable at
ftp://www.ebi.ac.uk/pub/databases/uniprot/
current release/knowledgebase/complete/
uniprot sprot.xml.gz

21) XML Version of TrEMBL. Avaibable at
ftp://www.ebi.ac.uk/pub/databases/uniprot/
current release/knowledgebase/complete/
uniprot trembl.xml.gz

22) XML Version of DBLP. Available at http://
dblp.uni-trier.de/xml/

23) Zhang, K.: Algorithms for the constrained
editing distance between ordered labeled trees
and related problems, Pattern Recognition,
Vol.28, No.3, pp.463–474 (1995).

24) Zhang, K. and Shasha, D.: Simple Fast Algo-
rithm for the Editing Distance Between Trees
and Related Problems, SIAM Journal of Com-
puting, Vol.18, No.6, pp.1245–1262 (Dec.1989).

25) Zhang, K. and Shasha, D.: Tree Pattern
Matching, Pattern Matching Algorithms, chap-
ter 11. Oxford University Press (1997).

(Received September 19, 2005)
(Accepted March 13, 2006)

Vol. 47 No. SIG 8(TOD 30) SLAX : An Improved Leaf-Clustering Based Approximate XML 57

(Editor in Charge: Hiroshi Ishikawa,
Masayoshi Aritsugi,
Kaoru Katayama,
Yutaka Kidawara,
Masashi Tsuchida)

Wenxin Liang received his
B.E. and M.E. degrees in biomed-
ical electronic engineering from
Xi’an Jiaotong University, China
in 1998 and 2001, respectively.
He is currently a Ph.D. student
at the Department of Computer

Science, Graduate School of Information Sci-
ence and Engineering, Tokyo Institute of Tech-
nology, Japan. His current research interests in-
clude XML data integration and management,
XML storage, indexing, labeling and querying
techniques. He is a student member of IPSJ,
DBSJ and SIGMOD-J.

Haruo Yokota received his
B.E., M.E., and Dr.Eng. degrees
from Tokyo Institute of Tech-
nology in 1980, 1982, and 1991,
respectively. He joined Fujitsu
Ltd. in 1982, and was a re-
searcher at the ICOT for the

Japanese 5th Generation Computer Project
from 1982 to 1986, and at Fujitsu Laboratories
Ltd. from 1986 to 1992. From 1992 to 1998, he
was an associate professor in Japan Advanced
Institute of Science and Technology (JAIST).
He is currently a professor at Global Scien-
tific Information and Computing Center, and
Department of Computer Science in Graduate
School of Information Science and Engineer-
ing in Tokyo Institute of Technology. His cur-
rent research interests include general research
area of data engineering, information storage
systems and dependable computing. He is a
member of DBSJ, IPSJ, IEICE, JSAI, IEEE,
IEEE-CS, ACM, ACM-SIGMOD, and ACM-
SIGARCH.

