[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

OO /0000
Article / Book Information
Title Treatment of Rules in Individual Metadata of Flexible Contents
Management
Author Kensuke OTA, Dai Kobayashi, Takashi Kobayashi, Ryo Taguchi, Haruo
Yokota
Journal/Book name Proc. of International Special Workshop on Databases For Next

Generation Researchers (SWOD 2006), Vol. , No., pp. 77-82

Issue date 2006, 4

DOl 10.1109/ICDEW.2006.153
RL | mesesiessogmecu
Copight | (12006 IEEE. PersonaiT use of s materal s perited, Permisson

from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note OO0000000000000O00O0d
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)


http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Treatment of Rules in Individual Metadata of Flexible Contents Management

Kensuke Ohta', Dai Kobayashi?, Takashi Kobayashi®, Ryo Taguchi, and Haruo Yokota*?

! Faculty of Engineering
Tokyo Institute of Technology

2 Grad. School of Info. Sci. and Eng.
Tokyo Institute of Technology

3 Global Scientific Info. and Comp. Center

Tokyo Institute of Technology

% Science and Technical Research Laboratories
Japan Broadcasting Corporation
{ohta@de.cs,daik @de.cs,tkobaya @gsic}.titech.ac.jp, taguchi.r-cs @nhk.or.jp, yokota@cs.titech.ac.jp

Abstract

The properties of contents stored in a computer system
are very wide while the data volume treated in the system
becomes very large. It is important to treat each stored ob-
ject in different manners to reflect its properties in the data
management for the large amount of stored data. To satisfy
the requirement, we propose a method for the autonomous
management based on ECA rules stored in metadata of the
contents. We study the feasibility of treating a large number
of ECA rules corresponding to the number of stored objects.
Because the cost for evaluating conditions in the rules be-
comes dominant to the system performance when the num-
ber of objects increases, we divide the conditions into two
types, previously evaluable conditions and runtime evalu-
able conditions, and construct a discrimination network for
the previously evaluable conditions of each event to reduce
the cost for processing the rules. We implement the methods
in the autonomous disk system, a high functional storage
system we proposed, and evaluate the efficiency of them.

1 Introduction

The efficient management for large amount of data has
been strongly required because the data volume stored in a
computer system increases explosively. At the same time,
the variety of stored contents has also been very wide. To
realize the efficient data management, these various stored
objects should be treated in different manners to reflect their
properties.

As an approach for reflecting the property of stored con-
tents in data management, the concept of Information Life-
cycle Management (ILM) [1,2,9] has been proposed. The
basic mechanism of the ILM is to migrate the stored objects

between storage devices having different cost-performance
features, based on given system-wide policies for access
frequencies and time information. However, the strategy
determined by the system-wide policies is less flexible for
the diversity of actual contents. The finer grained control
considering each content is required.

To satisty the requirement, we propose a method that is
to specify the control strategy for each stored object in its
metadata. We use the ECA (Event-Condition-Action) rules
to express the control strategy in the metadata. The ECA ar-
chitecture was originally proposed for the active databases
to move the reactive behavior from database applications
into the DBMS using declarative rule definitions [4, 8]. The
framework of declarative specification to invoke actions un-
der predefined conditions for a certain event is also useful
for managing stored contents. The desired actions for man-
aging them can be invoked if the state of storages or stored
objects satisfies given conditions when a specified event oc-
curs. Our methods enable the fine-grain flexible control cor-
responding to each content.

To implement the ECA-rule based contents manage-
ment, we have to consider the cost of processing the rules.
The cost for evaluating conditions in the rules becomes
dominant to the system performance when the number of
stored objects increases. It is important to reduce the cost
of condition evaluation.

To make the rule processing for stored contents efficient,
we propose a method of dividing the conditions of an ECA
rule into two types, previously evaluable conditions (PEC)
and runtime evaluable conditions (REC), and construct a
discrimination network for the PEC of each event. It omits
the redundant condition evaluation, and reduces the number
of rules to be evaluated when the event occurs. We also



propose a method that is to prepare true rule tables and false
rule tables to reduce the cost for updating the discrimination
network.

We implement the proposed methods on the autonomous
disk system, a high functional storage system we proposed
[10], and show efficiency of the proposed methods by ex-
periments on the autonomous disk system.

The rest of the paper is organized as follows. At first,
in Section 2, we describe assumptions related to the storage
system, metadata and the ECA architecture we use. Then,
we explain the ECA rules for managing stored contents in
Section 3. Section 4 describes a naive approach for process-
ing rules and the proposed methods. Then, the effectiveness
of the proposed method is considered through the experi-
ment on the autonomous disk system in Section 5. The re-
lated works is described in Section 6, and the conclusions
and future work are described in Section 7.

2 Assumptions

At first, in this section, we briefly describe assumptions
of a storage system, metadata and ECA architecture to pre-
pare the consideration of ECA rules in metadata to express
the fine-grain control strategy.

2.1 Storage System

We assume a high functional storage system to handle
the ECA rules in metadata. We have proposed the au-
tonomous disk system as a high functional storage system
[10]. It has an instruction set for handling the internal rule.
Flexible descriptions become possible for content manage-
ments by combining those instructions in ECA rules. How-
ever, the proposed method can be also applied to other type
of high functional storage systems.

2.2 Metadata

The metadata is an attribute information for a stored ob-
ject. In other words, each stored object has its own meta-
data. We assume that the metadata contains the file attribute
supported by standard file systems, such as POSIX1003.1
specification and NFS version 3 [3]. It may also contains
information defined by users, such as copyright expiration
date and relationship to other objects. In this paper, we do
not describe about the details of metadata, but assume that
ECA rules can also be stored in metadata of each object.

2.3 ECA Rule

The ECA architecture was originally proposed for the ac-
tive databases [4]. It has a number of variants [8]. Here, we
assume that an ECA rule has three components: an event, a
condition, and an action. The event part of the rule describes
a happening to which the rule may be able to respond. The
condition part of the rule examines the context in which the
event has taken place. The action describes the task to be
carried out by the rule if the relevant event has taken place

and the condition has been evaluated to frue. We assume
that users know the commands of the high functional stor-
age system to be written in the ECA rules.

3 ECA Rule for Contents Management

To apply the ECA rules to management of stored con-
tents, we have to consider what kind of information should
be specified in the rules.

e In event, basic operations for stored contents, such
as insertion and deletion, the timer interrupt and the
events defined by applications are written.

o In condition, the restrictions concerning the metadata
of contents, presence of contents, and condition of pa-
rameter decided when an event occurs are written.

e In action, the tasks using the internal command offered
by the high functional storage system are written. If
the internal commands that touch the system directly
are being offered enough, the range of describable pro-
cessing will become wide.

The following are example rules for handling stored con-
tents.

Example 1 This is a rule for changing the permission of
opening web contents to the public. When the image
used by Web contents is open to the public at limited
period by the reason of copyright, this rule is used to
release the inspection limitation on the day of opening
to the public:

Event At 2006/12/31 24:00

Condition If the permission of inspection from the
outside is denied

Action Change the permission of the content to allow
access from outside

Example 2 This is a rule to delete contents that relates to
the deleted image content when the image content is
deleted. If there are one or more voice contents and ti-
tle text whose access frequencies are below the thresh-
old related to the deleted image content, they will be
deleted when the image content is deleted:

Event When image content is deleted

Condition If there are one or more voice contents and
title text whose access frequencies are below the
threshold related to the deleted image content

Action Delete the concerned contents

Thus, the flexible contents management is expressed by
the rules in the metadata of each stored object.



4 Rule Processing

In this section, we propose methods to reduce the time
for evaluating the condition in a large amount of rules. Be-
fore explaining the proposed method, we describe a naive
approach to process rules for comparison. Then, we de-
scribe the methods to shorten the evaluation and update op-
erations.

4.1 Naive Approach

A rule manager is required to register and execute rules
to implement a system. When a rule is added to the system,
the rule manager registers the rule. At this time, this rule is
mapped to the event in the rule manager. When the event
occurs, this rule becomes one of the candidate rules to be
invoked for the event.

When an event occurs, we get the invocation candidate
rules related to this event. The condition of each rule is eval-
uated. If the evaluation result of the condition is true, the
tasks described in the action are executed. In this approach,
the cost to evaluate the condition in a large amount of rules
is expensive. We should evaluate the condition for all rules
related to the event whenever the event occurs. However,
scanning all rules may waste of many resources.

4.2 Proposed Method

4.2,1 Division of Condition

A conditions of a rule can be divided into two parts: pre-
viously evaluable condition (PEC) and runtime evaluable
condition (REC). PEC can be evaluated regardless of the
event occurrence. REC should be evaluated when the event
occurs. PEC can exist as a condition of contents that have
already been stored. REC can be generated because of the
parameter decided for the first time when the event occurs.

For example, the condition “If the permission of inspec-
tion from the outside is denied” in the rule of Example 1 is
a PEC. The condition “If the voice contents or the title text
whose access frequency is below the threshold exists” in a
part of the rule in Example 2 is a REC.

PEC may be composed of multiple conditional expres-
sions. It can be divided into partial conditions, sPEC(sub-
PEC)s including a single metadata item. We evaluate sPECs
when the metadata of contents is updated, and evaluate REC
of the rule whose evaluation of PEC is frue when an event
occurs. Because the invocation candidate rules are reduced,
the rule invocation time is shortened when an event occurs.

4.2.2 Outline of Execution
Discrimination network constructed by registered rules de-

cides invocation candidate rules and evaluates RECs of

those rules when an event occurs. Figure 1 is the outline
of the process using the discrimination network. The dis-
crimination network is composed of one root node, table
nodes, join nodes, firing nodes and arcs that connect nodes.

In the root node, the condition of the registered rule is
divided. The table node of each kind of the metadata is

when  Time(currentTime) when Time(currentTime)

if Content2.type = “avi”
and Content2.size >= 500MB

Contentl.type == “log”
and Contentl.size >= 200KB
and currentTime <= Contentl.etime and Content2.mtime

<= 2005.12,09 17:00:00

and currentTime <= Content2.etime

then action
then action

transformation transformation

Event : Time

root node
table no dE/T\

[ type |

true rule table
true rulg able

before

St -

after

RulelD | sub Condiion (SPEC) join \

jOIn node,

Rulel | Contentltype =="log" join
Rule2 | Content2.type == "avi"

firing node

Rulel Rule2
: Condmon is true. Condition is true.
: Evaluate Runtime Evaluate Runtime
Evaluable Condition Evaluable Condition

if true. if true.

Rulel [Ruled]is firing! Rule2 [Rule2]is firing!

Figure 1.
method

Execution Outline of proposed

generated, and it has a true rule table on which rules are
registered rules when the sPEC evaluation is true, and a
false rule table on which rules are registered rules when
the sPEC evaluation is false. In the join node, two true rule
sets passed from table nodes or other join nodes are joined.
When registering or deleting a rule, the join node is gen-
erated or deleted. In the firing node, RECs of rules passed
from the join nodes are evaluated, and the actions of rules
will be executed when their REC evaluations are true.

4.2.3 Operation on Event Occurrence

The discrimination network is generated according to the
number of event types. In the discrimination network cor-
responding to the occurred event, the following operations
are executed.

1. Each table node passes a true rule set to the join node.
This true rule set is a rule group registered in the true
rule table.

2. In the join node, rules included in two rule sets are
extracted.

3. These rules are passed to the firing node.

4. In the firing node, RECs of the passed rules are evalu-
ated. If the results are true, the actions are executed.

For example, in Figure 1, the true rule sets of the table
nodes “type” and “size” are passed to the join nodes when
the event is generated. Rules included in those true rule
sets are extracted and passed to the firing nodes. In the fir-
ing nodes, rules passed from the join node are invoked if



their REC evaluation are true. If Rule 1 is included in those
rules, the action of Rule 1 will be executed. Similarly, Rule
2 can be executed in the same way.

4.2.4 Operation for Registered or Deleted Rules
When a rule is registered:

1. In the root node, the condition is divided into PECs
and RECs, and a PEC is divided to SPECs. The sPECs
are mapped to the rule including themselves, and they
are passed to the corresponding table nodes depended
on metadata item included in their sPECs.

2. In the table node, the passed sPEC is evaluated, and if
its result is true, it will be registered to the true rule
table; otherwise, it will be registered to the false rule
table.

3. The join node is generated if it does not exist.

For instance, in Figure 1 , sSPEC “The file type of Content
1 is log” is registered in the table node “type”, and sPEC
“The size of Content 1 is 200KB or more” is registered in
the table node “size” when Rule 1 is registered. The join
node will be newly generated, if there is no join node that
joins “type” and “size”.

When the rule is deleted, the corresponding sPECs will
be deleted from the table node, and the corresponding join
node will be deleted.

4.2.5 Operation for Updated Content

When a sPEC of the condition concerning updated con-
tents exists, in the table nodes including the sPEC, it is re-
evaluated and registered to the true rule table or false rule
table according to the result of the re-evaluation. The rule
does not need to be restructured at the update by doing man-
agement of SPEC with two kinds of tables. Thus, the update
processing time can be reduced.

5 Experiment

The proposed method is implemented on the au-
tonomous disk system to show their effectiveness.

5.1 Environment

The experiment is conducted on the autonomous disk
system as a decentralized storage technology proposed.
An autonomous disk is imitated by using Java on Linux
cluster. The experimental environment is composed of a
network switch having enough backbone performance and
eight Linux boxes shown in Table 1.

5.2 Scenario

We measured the rule processing time when the event
occurs by the proposed method and the delay time when
contents are updated by using the proposed method.

Table 1. Experimental Environment

CPU AMD Athlon XP-M1800+ (1.53GHz)

Memory | PC2100 DDR SDRAM IGB

Disk TOSHIBA MK3019GAX (30GBUO 5400rpmU 2.5inch)
oS Linux 2.4.20

Java VM | Sun J2SE SDK 1.5.0.03 Server VM

when time(currentTime)

if this.item == “video”
and ol.item == “audio”
and this.title == ol.title
and currentTime <= this.etime
and currentTime <= ol.etime

then action

Figure 2. Rule used in the experiment

To set the rule used in the experiment, the following sit-
uations are assumed. When various stream data are stored,
we would like to store those data in one container format as
much as possible. If there are video data and voice data of
the same title and the expiration date of each data is not due
when the event occurs, the system will move those data to
other storages and edit them there automatically.

Figure 2 shows the rule used in the experiment. Each
one of the first three conditions represents a sSPEC, and the
whole three conditions in Figure 2 corresponds to a PEC,
and the last two ones denote RECs. We describe a rule in
Figure 2 to each content. To avoid the fluctuation of pro-
cessing time by the difference of the action, the action is
not executed in the experiment.

5.3 Comparison of Rule Processing Time

We compare the rule processing time of our method with
that of the processing method by scanning all rules. The
rule processing time when an event occurs is measured with
changing the ratio of the rule when its PEC evaluation is
true.

We provide a rule to each content, and show the effect of
narrowing by evaluation of PEC. All the REC evaluations
are assumed to be frue. We measure the rule processing
time when the number of registration rules is 100, 1000,
3000, 5000, 8000 and 10000.

Figure 3 and Figure 4 show the rule processing time
when the probability of the its PEC evaluation to be true is
10%, and 5% among rules with the possibility of invocating
when the event occurs.

The rule processing time of the proposed method de-
pends on the ratio of PEC and REC in the condition of rule.
Therefore, we measure the rule processing time when the
ratio of PEC and REC changes.



80000
70000 [
60000

g 50000 ‘,"'

£ . - Scan-Al

< 40000 | cam

2 = —=— PEC(DN)*REC
F 30000 -

20000 e

10000 |- /
0 - L L

0 2000 4000 6000 8000 10000
The Number of Rules

Figure 3. Rule processing time when proba-
bility of PEC evaluation to be ture is 10%

45000
40000
35000

30000 -

«@ o -
E 25000 - - - Scan-All
£ 20000 - —8— PEC(DN)+REC

= 15000 | .
10000 |- e

P i L

0

0 2000 4000 6000 8000 10000
The Number of Rules

Figure 4. Rule processing time when proba-
bility of PEC evaluation to be ture is 5%

Figure 5 shows the rule processing time when the ra-
tio of the rule that the evaluation of the PEC is true is 5%.
We measure the rule processing time when the ratio of PEC
and REC is 3:2, 2:3, and 1:4. We intentionally changed
the ratio of PEC and REC included in a rule. The rule of
PEC:REC=3:2 is the same as the rule used in the experi-
ment (Figure 2).

5.4 Comparison of Contents Updating
Time

We measured the latency delay by implementing of the
proposed method when the metadata of contents is updated.
In this experiment, we measure three operations (insertion,
update, and deletion of contents). This is because the updat-
ing of discrimination network is necessary when the meta-
data of contents is changed by each operation.

Figure 6 shows the result of the average processing time
for 1000 insertions, updates, and deletions of contents.
These operations are done from one client to an autonomous
disk sequentially.

5.5 Discussion

5.5.1 Rule Processing Performance

In the experiment in Section 5.3, our method always re-
deuces the rule processing time when an event occurs.

In the rule processing method scanning all rules, the rule
processing time increases as the number of rules increases.
This is because the condition evaluation for all rules relative
to the event must be executed.

In the proposed method, the processing time also in-
creases as the number of rules increases. This is because

45000
40000 ~
35000 - |
30000 | o -+ - Scan-All
Hhoedl o Peoouess
2 —h | =2
20000
E PEC(DN):REC=1:4
15000 -

10000 |

5000 .

0 bt e ! L

0 2000 4000 6000 8000 10000
The Number of Rules

Figure 5. Rule processing time when ratio of
PEC and REC are changes

Time [ms]

© Scan-Al
B PEC(DN}*REC

Bl

Insert Update Delete

Figure 6. Average processing time of inser-
tion, update, and deletion

the number of rules whose PEC evaluation is true increases,
and the join processing time increases according to the in-
crease of the number of rules.

In other experiment, the processing time increases as the
ratio of REC included in the condition increases. However,
because the processing rule number is decreased by narrow-
ing the invocation candidate rules, the rule processing time
of our method is less than that of the method scanning all
rules.

5.5.2 Contents Updating Performance

In the update operation, the latency delay for implement-
ing of the proposed method is only 3ms, because we only
need to re-evaluate the sPECs and register them to the frue
rule table or false rule table in the table node including the
sPECs that should be changed.

As for the insertion and deletion of contents, the latency
delay for implementing of the proposed method is 15ms and
16ms. This is because not only the renewal of the table
node but also the registration or deletion of the rule from the
discrimination network, and generation or deletion of the
join node are needed. However, the delay can be acceptable
compared with the imprement of rule processing time.

6 Related Work

The research on content-aware storage management is
one of hot topics. OSD (Object-Based Storage Device) is
the mechanism that the data under storage is treated in each
content [6]. OSD manages the file, not by block unit, in
each object with high abstraction level. In the description



of the metadata and the control rule in each content, the
compatibility of OSD to our reseach is good.

Policy-based ILM provides the control policy to the en-
tire system, and the storage management has been proposed
to the automation of ILM using the centralized management
system [2]. It is difficult to do the control reflecting the state
and the access tendency of individual contents in detail be-
cause each policy targets all contents.

The storage management using the ECA rule has been
researched in active databases [8], and the ECA rule itself
has been well studied in the active databases [4, 8].

In the rule-based systems such as a production system
[5], the Rete algorithm [7] is widely used to evaluate the
condition of rules at high speed. An rule-based system is
demanded to retrieve a corresponding data set at high speed
from a large amount of data. Therefore, the Rete network
based on the Rete algorithm has been used in the rule-based
system.

The Rete algorithm is suitable for executing the evalua-
tion whether the condition of the complex rule is satisfied
each contents at high speed in the situation in which a large
amount of contents are stored. The proposed method aims
to evaluate the condition of rules given to the contents at
high speed in the situation when the number of rule is more
than that of the contents.

7 Conclusions and Future Work

To realize the fine-grain flexible contents management
in high functional storage systems, we propose a method
to describe the controle rule in the metadata of individual
stored object. The rule specification for each object enlarges
the number of rules treated in the system. Because regis-
tered rules contain many unsatisfied conditions, the cost of
scannnig all rules for an event becomes expensive.

In this paper, we proposed a method to shorten rule in-
vocation time when an event occurs. In the method, we
divided the condition of rule into PECs and RECs, and con-
structed the discrimination network to evaluate the PEC.
Because the method reduces the number of invocation can-
didate rules by the discrimination network when the event
occurred, the rule invocation time can be reduced. We also
proposed a method to shorten the update of the descrimina-
tion network.

We implemented the proposed methods on the au-
tonomous disk system, and compared the execution time of
the proposed methods with that of the method scanning all
rules by experiments. The results indicate that the rule pro-
cessing time can be reduced by using our methods. Compar-
ing with the normal systems, although our proposed system
has a few milli seconds of performance degradation, it can
be hided by implementing an asynchronous descrimination
network update function.

As the future work, it is necessary to consider a rule
which requires the communication excluding storage be-

yond the network. We need to reduce the time of REC eval-
uation. Moreover, the method of describing a large amount
of rules automatically is crucial. In addition, We need to
introduce a rule verification technique to prevent the disad-
vantage from happening to the user. For example, we need a
technique for discovering rules whose conditions are never
satisfied and checking the termination of rules.

Acknowledgements

We thank Mr. Tomohiro Yoshihara for his advice about
implementation on the autonomous disks.

This work is partially supported by the JST CREST,
SRC, MEXT of Japanese Government via Grant-in-Aid for
Scientific Research #16016232 and the MEXT 21st Century
COE Program.

References

[1] L. L. Ashton, E. A. Baker, A. J. Bariska, E. M. Dawson,
R. L. Ferziger, S. M. Kissinger, T. A. Menendez, S. Shyam,
J. P. Strickland, D. K. Thompson, G. R. Wilcock, and M. W.
Wood. Two decades of policy-based storage management
for the IBM mainframe computer. IBM Systems Journal,
42(2):302-321, 2003.

[2] M. Beigi, M. V. Devarakonda, R. Jain, M. Kaplan, D. Pease,
J. Rubas, U. Sharma, and A. Verma. Policy-Based Informa-
tion Lifecycle Management in a Large-Scale File System. In
POLICY, pages 139-148. IEEE Computer Society, 2005.

[3] B.Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3
Protocol Specification. Sun Microsystems, Inc., June 1995.
http://ftp.riken.go.jp/pub/internet-doc/rfcs/rfc1813.txt.

[4] U. Dayal. Active database systems. In Proc. of 3rd Intn’l
Conference on Data and Knowledge Bases, pages 150-169,
1988.

[5] T. Ishida. Parallel rule firing in production systems. IEEE
Trans. Knowl. Data Eng., 3(1):11-17, 1991.

[6] V. Kher and Y. Kim. Decentralized Authentication Mecha-
nisms for Object-based Storage Devices. In IEEE Security
in Storage Workshop, pages 1-10. IEEE Computer Society,
2003.

[7]1 D. P. Miranker. TREAT : a new and efficient match algo-
rithm for Al production systems. Research notes in artificial
intelligence. Pitman, Morgan Kaufmann, London, San Ma-
teo, Calif, 1990.

[8] N. W. Paton and O. Diaz. Active database systems. ACM
Comput. Surv., 31(1):63-103, 1999.

[9] A. Verma, D. Pease, U. Sharma, M. Kaplan, J. Rubas,
R. Jain, M. V. Devarakonda, and M. Beigi. An Architec-
ture for Lifecycle Management in Very Large File Systems.
In MSST, pages 160-168. IEEE Computer Society, 2005.

[10] H. Yokota. Autonomous Disks for Advanced Database Ap-
plications. In Proc. of International Symposium on Database
Applications in Non-Traditional Environments (DANTE’99),
pages 441-448, Nov. 1999.



