
論文 / 著書情報
Article / Book Information

Title A Performance Comparison between the DR-net and a Hierarchical
RAID System

Author Yasuyuki Mimatsu, Haruo Yokota

Journal/Book name Proc. of Pacific Rim International Symposium on Dependable
Computing 2000 (PRDC 2000), Vol. , No. , pp. 193-200

Issue date 2000, 12

DOI http://dx.doi.org/10.1109/PRDC.2000.897302

URL http://www.ieee.org/index.html

Copyright (c)2000 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/PRDC.2000.897302
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

A Performance Comparison between the DR-net and a Hierarchical RAID System

Yasuyuki Mimatsu�

Hitachi, Ltd.
Systems Development Laboratory

mimatsu@sdl.hitachi.co.jp

Haruo Yokota
Tokyo Institute of Technology

Graduate School of Computer Science
yokota@cs.titech.ac.jp

Abstract

When the number of disks rises in disk array systems
that contain multiple disk drives, system performance is
limited by a bottleneck at a centralized controller and/or at
a communication path that uses a bus.

We evaluate, through simulation, a scalable architecture
called DR-net, in which the controller functions are dis-
tributed to all disk drives and each disk has autonomy in
processing its tasks. DR-net provided high throughput in
proportion to the number of disks. In a conventional system,
the influence of the bus setup time and concentration of the
parity calculation load caused the throughput to saturate.

We also show that DR-net can take advantage of disk
autonomy when reconstructing data stored in failed disks.
Our results indicate that the distribution of functions and
the autonomy of disk drives enable better scalability and
more effective utilization of system resources than with a
hierarchical system.

1 Introduction

In recent years, high performance disk systems have been
required to narrow a performance gap between processors
and secondary storage devices. Also, large capacity is also
needed to store very large data sets such as multimedia data
or contents in WWW servers, very large database systems,
and so on. To provide large capacity and high performance,
a scalable storage-system architecture is needed.

A redundant array of inexpensive disks (RAID)[8] con-
sists of many disks to enable high performance and large
capacity. Also, a RAID maintains redundant information to
ensure high reliability. Many commercial RAID products
now are available.

As the number of disks grows, though, a system is ex-
pected to concurrently process many requests. This can

�This research was studied when the author was enrolled in Japan
Advanced Institute of Science and Technology.

lead to problems in a conventional level-5 RAID. First, disk
accesses are distributed among many disk drives, but the
communication between an array controller and the disk
drives is concentrated on a bus. If the bus bandwidth is not
wide enough, the performance of the whole system will be
limited. Second, the probability of multiple disk failures in
a RAID5 increases as the number of disks rises. If there are
many disks in a system or the reliability of the individual
disks is not very high, multiple disks will fail and data will
be lost. Third, when many access requests are processed
concurrently in an array controller, the system performance
may be limited by the CPU performance even if the bus is
fast enough.

We have proposed a disk system architecture called DR-
net(Data Reconstruction Network)[11][13][16][17]. In DR-
net, all disk drives and interfaces to an external environment
are connected by an interconnection network. This architec-
ture provides system scalability by eliminating the central
communication path typified by the bus in RAID5 or the
array controller. The functions of an array controller, e.g.,
the maintenance of redundant data, data caching, and data
reconstruction to recover from disk failures, are distributed
to all disk drives. Each disk drive processes these functions,
acting as a ‘disk node’, with its own CPU and memory in
a disk controller. DR-net also provides fault tolerance to
multiple disk failures.

A great deal of work related to function distribution
in a disk system has been reported. In [1][5][10], Ac-
tive Disk, a successor of Network-attached secure disks
(NASD)[6][9], is discussed. This approach aims to shift
part of the application programs to disk drives and to re-
duce the data transfer between an application server and
disk drives. IDISK[7] has a general purpose CPU, a mem-
ory capacity of tens of megabytes and gigabit communi-
cation links in the disk drives. IDISK is designed for
decision support systems (DDSs), but a disk array with
a number of IDISKs can be made. In such a case, each
IDISK will have the functions of a conventional array con-
troller. TickerTAIP/DataMesh[2][12] has multiple con-
trollers which are connected to each other by an internal

network. In [2], it was shown that the system performance
is improved by distribution of the parity calculation.

DR-net differs from these approaches, though, in that it
is an architecture where the system scalability, considering
not only performance but also reliability, is given a high
priority. When the system becomes large and the number
of components increased, it is necessary to tolerate multiple
failures. DR-net architecture provides tolerance to double
disk failures with its parity data management described be-
low. Moreover, its symmetrical and uniform structure pro-
vides redundant communication paths between disk drives
when communication failures occur.

We expect DR-net to take advantage of function distribu-
tion when the number of disks is large because the commu-
nication and controller load are not concentrated on specific
system components and are distributed over the whole sys-
tem. We also expect DR-net to use its system resources ef-
fectively because each disk node can precisely manage and
use its disk and communication links precisely with local
information about them, i.e., busy or idle, access schedule,
and so on. Furthermore, each disk node processes its tasks
more parallelly because the autonomous disk node can pro-
cess its tasks without waiting for directions from a remote
centralized controller.

In this paper, we show the effect of function distribution
and disk drive autonomy through simulations. Particularly,
we evaluated the read and write access throughput when the
system is scaled up with high reliability, in comparison to
a conventional disk system that is hierarchically structured
with multiple buses.

This paper is organized as follows: in the next section,
the structure and behavior of DR-net is briefly described.
In section 3, models of disk systems used in the simulation
are described. Results of the simulation experiments are
discussed in section 4.

2 Overview of DR-net

DR-net consists of disk nodes, interface nodes, and an
interconnection network. It eliminates the performance bot-
tleneck that exists in RAID5 by connecting nodes with an
interconnection network instead of a bus, and by distributing
array controller functions to disk drives. In this section, we
describe the structure and behavior of DR-net.

2.1 Disk Nodes

A disk node consists of a disk drive and a disk controller.
The controller has its own CPU and memory so that it is
not only able to process disk accesses but can also calculate
parity to maintain redundant data and communicate with
other nodes via communication links. When a disk node
receives a request from an interface node or another disk

to external environment

disk node

interface node

request

Figure 1. Interface node in DR-net

node, it accesses its disk drives to read or write data. If the
drive fails, it reconstructs data or updates parity cooperating
neighboring nodes through internode communication.

2.2 Interface Nodes

An interface node is also connected to the network to
send access requests from the external environment to disk
nodes and return results from the nodes. The number of
interface nodes in DR-net is unlimited because they can
be placed at any position in the network. For example, if
we use a mesh or torus network to connect disk nodes, the
interface node can be placed at any link between the disk
nodes (Figure 1). Thus, DR-net enables communication
throughout the network and provides a wide bandwidth to
the external environment through many interface nodes.

2.3 Parity Groups

A parity group is a unit that consists of a number of disk
nodes and maintains redundant parity data. In a parity group,
one disk node (a parity node) contains a parity block in its
disk drive and the other nodes contain data blocks (data
nodes). When parity management is needed in a parity
group, data nodes send related data to a parity node and the
parity node calculates the parity. The location of a parity
node in a parity group can be switched just as the location
of a parity block in RAID5 is switched in each parity stripe;
thus, parity blocks are distributed to all disks to avoid load
concentration during parity updating[11][13].

DR-net can conceptually use any kind of network topol-
ogy, but a two-dimensional torus network is especially ap-
propriate for mapping compact parity groups and to keep
the locality of communication in a parity group. We focus
on the 2D-torus network in this paper.

The structure and mapping of parity groups in the torus
network are shown in Figures 2 and 3[13]. Each parity group
consists of five disk nodes. Groups in Figure 2 are referred
to as FPGs (first parity groups), and the groups in Figure 3

00 01 02

20 22

30 31

41 42 43

33

23

44

0403

24

32

40

13

34

21

10 11 12 14

containing parity blocks
 at this phaseParity Group

Figure 2. First parity groups (FPGs)

are referred to as SPGs (second parity groups). Each parity
group maintains a parity block so that it can tolerate one disk
failure in the group. SPGs are used to provide tolerance to
multiple disk failures in an FPG. An SPG consists of five
nodes which each belong to different FPGs. DR-net pro-
vides higher reliability than RAID6 or a mirroring system
with these parity groups[16]. Furthermore, it enables toler-
ance to any single communication failures because its flat
and uniform structure provides alternative communication
paths between any two nodes.

When a data block in a disk node is updated, two parity
blocks must also be updated: one in an FPG and one in
an SPG. A new parity block is generated by a read-modify-
write operation. The shapes of the parity groups in Figures 2
and 3 were designed to maintain the locality of the commu-
nications.

3 Modeling of Disk Systems

To examine the effects of distributed functions and disk
node autonomy, we evaluated DR-net, comparing it to a
conventional disk system that has a hierarchical structure
with multiple buses, through simulation. In this section,
we describe how we modeled the evaluated systems and the
parameters that we used in the simulation experiments.

3.1 Hierarchical Disk System

Many disk array systems, e.g., RAID-II[4], use a hier-
archical structure to take system scalability into account.
Figure 4 depicts the modeling structure of the system we

00 01

10

02

12

04

1413

23222120

30 31

41 42 43

33 34

44

03

11

24

32

40

containing parity blocks
 at this phaseParity Group

Figure 3. Second parity groups (SPGs)

evaluated in our experiments. It consists of multiple RAID
subsystems and can be scaled up by increasing the number
of subsystems.

3.1.1 Interfaces to an External Environment

An interface receives read and write requests from an ex-
ternal environment, sends them to array controllers via a
front-end bus, receives the results, and sends the results
back to the external environment.

In our simulations, after an interface sent a disk access
request to an array controller, it immediately generated an-
other request and tried to send it also. When an interface
tried to send an disk access request to an array controller and
the controller had no buffer space to queue the request, the
interface was suspended until the request could be queued.
It was also suspended if the front-end bus was being used
for other communication.

The destination of each disk access request generated by
an interface was randomly selected. All accesses were a
read or write of a 64-KB block.

3.1.2 Buses

The system has three kinds of bus. The front-end bus is the
only bus that connects all interfaces and all array controllers.
An intermediate bus connects an array controller to the con-
trollers of back-end buses. A back-end bus connects to a
number of disks. When an access request generated by an
interface is sent to an array controller via the front-end bus,
the array controller sends a request to the bus controller of a
back-end bus via an intermediate bus and the bus controller

RAID subsystem

requests

front-end bus

interface node

RAID controller

bus controller

disk

back-end bus

requests requests

Figure 4. Hierarchical RAID system

sends it to a destination disk via the back-end bus. The result
data or status follows the same path in reverse.

A request waiting for release of a bus can immediately
acquire the bus as soon as the communication using that bus
ends. There is no priority for bus acquisition and a request
is randomly selected to acquire a bus if there are more than
one request waiting for release of the bus.

3.1.3 Array Controllers

An array controller receives requests from interfaces and
sends disk access requests to disks. If it receives multi-
ple requests, it can process them concurrently; that is, if a
process of one request is suspended for some reason (e.g.,
waiting for the release of an intermediate bus), the controller
can begin processing another request.

The controller also calculates parity data to maintain re-
dundant data as a precaution against disk failures. The
redundant data is maintained as in DR-net; in other words,
FPGs and SPGs are organized within a set of disks that are
connected by the same intermediate bus via back-end buses
and bus controllers. An FPG consists of disks connected
to different back-end buses. An SPG consists of disks con-
nected to the same back-end bus.

3.2 DR-net

Each interface node in DR-net is similar to an interface
in a hierarchical disk system except that it is connected to a
two-dimensional torus network by two links. All interface
nodes are located at equal distances from their neighbors to
evenly distribute communications over the whole network.

Each disk node is connected by four links and can com-
municate directions simultaneously. When a disk node tries
to send a message to another node and a link which is part of

the communication path is being used for other communica-
tion, the message cannot pass until the other communication
finishes. A disk node can handle multiple requests like an
array controller of a hierarchical disk system, but has less
memory so the number of requests is much smaller.

3.3 Parameters

Table 1 summarizes the parameters used in our simula-
tions. These parameters were adjusted to be match high-end
disk systems.

We used a 1-GB/s bandwidth for the front-end bus be-
cause such a bandwidth will be common when PCI-X and
10-Gbps FibreChannel become available in the near future.
The bandwidths of the other buses and links correspond to
4-Gbps and 1-Gbps FibreChannel, but the simulation was
not based on any specific hardware devices.

The number of requests concurrently buffered and pro-
cessed in an array controller was 50 times the number in a
disk node because an array controller must manage 50 disks.

The ratios define the number of system components. For
example, if the number of disks was 100, the number of
interfaces, array controllers, and FPGs was 20, 2, and 20,
respectively.

4 Results and Discussion

This section presents our simulation results concerning
the throughput of read/write access and data reconstruction
when disks fail.

4.1 Read/Write performance

Figures 5 and 6 show the read and write throughput when
the number of disks rose from 50 to 500. DR-net provided

Table 1. Parameters used in simulations

bandwidth DR-net link 100 MB/s
front-end bus 1 GB/s
intermediate bus 400 MB/s
back-end bus 100 MB/s

setup time DR-net link 50 us
all buses 1 us

XOR performance disk node 10 MB/s
array controller 200 MB/s

of request buffers disk node 5
array controller 250

ratio interfaces/disks 1/5
array controllers/disks 1/50
FPGs or SPGs/disks 1/5

disk unit of disk access 64 KB
average seek time 8.2 ms
transfer rate 50 MB/s

high read access throughput in proportion to the number of
disks. On the other hand, when the number of disks was
greater than 200, the throughput provided by the hierarchical
system saturated at about 14,000 I/Os per second (equal to
900 MB/s). The front-end bus was obviously a performance
bottleneck because its bandwidth was only 1 GB/s.

The write access throughput was lower than the read ac-
cess throughput because a write operation needs six disk
accesses to update one data and two parity blocks for an
FPG and an SPG. Thus, the front-end bus was not over-
whelmed and the write throughput increased in proportion
to the number of disks in the hierarchical system also.

When the number of disks increases in a hierarchical sys-
tem, more than a wider front-end bus bandwidth is needed.
The bus must also be able to connect a number of array con-
trollers and interfaces whose numbers increase in proportion
to the number of disks. If the number of bus ports increases,
however, it is likely to become more difficult to keep a wide
bandwidth and a short setup time.

Figure 7 shows the influence of setup time in a hierar-
chical system with 400 disks that uses a high-bandwidth (3
GB/s) front-end bus. When the setup time of the front-end
bus was short (1 us), the system throughput was as high
as that of DR-net. As the setup time increased, however,
throughput decreased. When a setup time increases from 1
us to 5 us, throughput was decreased by 30%.

To keep the bandwidth of front-end buses high and their
setup time short, the structure of a hierarchical system can be
modified to limit the number of front-end bus ports; that is,
the number of array controllers and interfaces. The through-
put provided by such systems, each having 400 disks and

0

10000

20000

30000

40000

0 200 400 600

number of disks

th
ro

ug
hp

ut
(I

/O
s

pe
r

se
c.

)

DR-net

Hierarchical
System

Figure 5. Read Access Throughput

0

3000

6000

9000

0 200 400 600

number of disks

th
ro

ug
hp

ut
(I

/O
s

pe
r

se
c.

)

DR-net

Hierarchical
System

Figure 6. Write Access Throughput

0

10000

20000

30000

40000

1 2 3 4 5

bus setup time (us)

th
ro

ug
hp

ut
(I

/O
s

pe
r

se
c.

)

DR-net
(setup=50us)
Hierarchical
System

Figure 7. Influence of Setup Time (front-end
bus = 3 GB/s)

Table 2. Bus Bandwidths in Modified Hierar-
chical Systems

40x10 intermediate 1GB/s
back-end 200MB/s

20x20 intermediate 1GB/s
back-end 200MB/s

10x40 intermediate 400MB/s
back-end 100MB/s

only two array controllers and a setup time of 1 us, is shown
in Figure 8. In the figure, 10� 40 (for example) means that
a back-end bus connects 10 disks and an array controller
manages 20 (=40/2) back-end buses. The bandwidth of
the intermediate and back-end buses also became higher in
some systems because their number of ports are increased to
compensate for the decreased number of front-end bus ports
(Table 2).

By modifying the system structure, as shown in Figure 8,
hierarchical systems can provide read throughput nearly as
high as that of DR-net. The modification of the structure,
however, affects the write throughput because each array
controller must manage more disks than in the original
structure. Figure 9 shows that each array controller needs
much higher parity calculation throughput to provide write
throughput as high as that of DR-net. The hierarchical sys-
tem’s throughput was only 70% that of DR-net even when
the parity calculation throughput was 500 MB/s. Although
CPU power continues to rapidly increase, the throughput of
parity calculation depends strongly on memory access speed
because a large amount of data must be calculated, and so
the whole data cannot be stored in the CPU cache.

Thus, the above results show that DR-net, which has a
flat uniform structure, provides better scalability than con-
ventional hierarchical disk systems. In terms of cost, the
elimination of expensive components (e.g., high-end CPUs
and state-of-the-art communication technology) makes DR-
net more cost-effective than the conventional systems. Fur-
thermore, in order to provide tolerance to any single failure,
the front-end bus and intermediate buses must be duplicated
because if one of them fails, there is no alternative commu-
nication path and the accessibility to some data is lost.

4.2 Data Reconstruction

In this section, the data reconstruction throughput is
shown as an example of the advantages of disk node au-
tonomy.

When one or more disks fail, they are replaced by new
disks and the data stored in the failed disks are reconstructed
using redundant data. The data reconstruction throughput

0

10000

20000

30000

40000

10
x4

0
(f

ro
nt

-
en

d=
1G

B
/s

)

40
x1

0
(f

ro
nt

-
en

d=
3G

B
/s

)

20
x2

0
(f

ro
nt

-
en

d=
3G

B
/s

)

10
x4

0
(f

ro
nt

-
en

d=
3G

B
/s

)

D
R

-n
et

(li
nk

=
10

0M
B

/s
)

R
E

A
D

th
ro

ug
hp

ut
(I

/O
s

pe
r

se
c.

)

Figure 8. Read Access Throughput of Sys-
tems with a Limited Number of Front-end Bus
Ports.

is important to system reliability because the probability of
data loss increases if the reconstruction process takes a long
time[8][3].

In a hierarchical system, when a failed disk is replaced, an
array controller reads data and parity from disks in the parity
group that the failed disk belonged to, regenerates the data
by parity calculation, then stores it on the new disk. In DR-
net, a disk node that has a new disk regenerates the data by
cooperating with other disk nodes in the same parity group.
A parallel parity calculation is done in multiple nodes. The
data and parity used for regeneration are sent to and received
from disk nodes. The communications are, however, done
locally because they are within a parity group.

In the simulation described below, both systems had 50
disks and pre-fetched up to 10 disk blocks. No priority was
given to a disk access request related to the reconstruction
process.

Figures 10 and 11 show, respectively, the data recon-
struction throughput when one disk failed and the interfaces
issued read requests, and when two disks failed and the inter-
faces issued write requests. We used these two simulations
in order to examine the influence of controller CPU work-
load. In the latter case, CPU workload was much higher than
the former because controllers had to calculate parity data
to process write requests during the reconstruction process
for two failed disks.

The difference in the throughput of the two systems was
clearly not caused by the parity calculation throughput be-
cause XOR performance did not affect the results. Also,
the communication bandwidth was equal in both systems
because the read and write throughputs were nearly equal
when the number of disks was small (Figures 5 and 6).

Thus, the difference must be due to the disk nodes auton-
omy. Each disk node that is related to the reconstruction
process can pre-fetch disk blocks or immediately send data
to other nodes when the disk or the link is idle. On the other
hand, in a hierarchical system, a disk does not perform a
pre-fetch, even if the disk is idle, until a pre-fetch request is
received from an array controller. The disk node autonomy
allows DR-net to use its resources more effectively than the
hierarchical system. Figure 10 shows that DR-net can re-
construct data six times as fast as the hierarchical system. If
write requests are processed during reconstruction, though,
the reconstruction throughput falls (Figure 11) because write
requests need more system resources than read requests.

5 Conclusions

In this paper, we examined the effect of distributed func-
tions and disk drives autonomy in disk systems. We evalu-
ated our disk system architecture, DR-net, which connects
autonomous disk drives with an interconnection network,
through simulation and compared it to a conventional disk
system with a hierarchical structure. System scalability and
data reconstruction throughput, which is related to system
reliability, were discussed.

DR-net has a flat uniform structure and provided high
throughput in proportion to the number of disks. On the
other hand, the throughput provided by a hierarchical sys-
tem saturated because of a performance bottleneck at the
front-end bus. If a high-bandwidth front-end bus with a
large number of ports was used, the increased setup time de-
creased the performance of the whole system. An increase
in setup time increases from 1 us to 5 us decreased through-
put by 30%. Furthermore, if a high-bandwidth front-end
bus which has few ports and a short setup time, each ar-
ray controller will need an extremely high parity calculation
throughput to keep the write throughput high. The hierar-
chical system provided only 70% of the DR-net throughput
even when the parity calculation throughput was 500MB/s.

DR-net also provided high data reconstruction through-
put. Because each disk node in DR-net can do its task with-
out waiting for directions from an array controller, DR-net
effectively utilizes its resources (e.g., disk drives, commu-
nication links, and so on.) When one disk fails during read-
request processing, DR-net can reconstruct data six times as
fast as the hierarchical system.

In this paper, we evaluated the effect of autonomy in terms
of data reconstruction throughput. In actual systems, how-
ever, we expect all tasks that disk nodes process, e.g., disk
access scheduling, to benefit from the autonomy. Further-
more, it is possible to execute other programs in disk nodes
of DR-net because their processors are general-purpose.
Currently, we are evolving our approach and working on
Autonomous Disk[14][15], the successor of DR-net, that

0

2000

4000

6000

8000

200 300 400 500

XOR performance (MB/s)

th
ro

ug
hp

ut
(I

/O
s

pe
r

se
c.

)

DR-net
(XOR=10MB/s)
Hierarchical
System

Figure 9. Write Throughput of Modified Hier-
archical Systems

0

30

60

90

120

100 200 300 400 500

XOR performance (MB/s)

da
ta

re
co

ns
tr

uc
tio

n
(b

lo
ck

s/
s)

DR-net
(XOR=10MB/s)

Hierarchical
System

Figure 10. Reconstruction Throughput for
One Disk Failure

0

10

20

30

40

50

60

70

80

90

100 300 500

XOR performance (MB/s)

da
ta

re
co

ns
tr

uc
tio

n
(b

lo
ck

s/
s)

DR-net
(XOR=10MB/s)

Hierarchical
System

Figure 11. Reconstruction Throughput for
Two Disk Failures

puts part of network file system codes into disk nodes and
integrate them with maintenance of redundant data in lAN
or SAN environment.

References

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: Pro-
gramming model, algorithms and evaluation. In Proc. of
Architectural Support for Programming Languages and Op-
erating Systems, October 4-7, 1998, San Jose, CA USA,
pages 81–91, 1998.

[2] P. Cao, S. B. Lim, S. Venkataraman, and J. Wilkes. The
TickerTAIP parallel RAID architecture. In Proc. of the 20th
ISCA, pages 52 – 63, 1993.

[3] P. M. Chen et al. RAID: High-Performance, Reliable Sec-
ondary Storage. ACM Computing Surveys, 26(2):145 – 185,
Jun 1994.

[4] A. L. Drapeau, K. W. Shirriff, and J. H. Hartmann. RAID-II:
A High-Bandwidth Network File Server. In Proc. of the 21st
ISCA, pages 234–244, 1994.

[5] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze-
lenka. A cost-effective, high-bandwidth storage architec-
ture. In Proc. of Architectural Support for Programming
Languages and Operating Systems, October 4-7, 1998, San
Jose, CA USA, pages 92–103, 1998.

[6] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Fein-
berg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg,
and J. Zelenka. File server scaling with network-attached se-
cure disks. In Proc. of the ACM Int’l Conf. on Measurement
and Modeling of Computer Systems, 1997.

[7] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case for
intelligent disks(idisks). In Proc. of ACM SIGMOD Confer-
ence, pages 42–52, Sep 1998.

[8] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for
Redundant Arrays of Inexpensive Disks(RAID). In Proc. of
ACM SIGMOD Conference, pages 109–116, Jun 1988.

[9] E. Riedel and G. Gibson. Understanding customer dissatis-
faction with underutilized distributed file servers. In Proc. of
the 5th NASA Goddard Space Flight Center Conf. on Mass
Storage Systems and Technologies, 1996.

[10] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage
for large-scale data mining and multimedia. In Proc. of
International Conference on VLDB, August 24-27, 1998,
New York City, New York, USA, pages 62–73, 1998.

[11] S. Tomonaga and H. Yokota. An Implementation of a Highly
Reliable Parallel-Disk System using Transputers. In Proc. of
the 6th Transputer/Occam Intn’l Conf., pages 241–254. IOS
Press, Jun 1994.

[12] J. Wilkes. The DataMesh research project. In P. W. et al.,
editor, Transputing ’91, pages 547 – 553. IOS Press, 1991.

[13] H. Yokota. DR-nets: Data-Reconstruction Networks for
Highly Reliable Parallel-Disk Systems. In Proc. of 2nd
Workshop on I/O in Parallel Computer Systems, pages 105 –
116, Apr 1994. (Also in ACM Computer Architecture News
Vol.22, No.4 Sep. 1994).

[14] H. Yokota. Autonomous disks for advanced database appli-
cations. In Proc. of International Symposium on Database
Applications in Non-Traditional Environments, pages 441–
448, Nov 1999.

[15] H. Yokota. Performance and reliability of secondary storage
systems. In Proc. of World Multiconference on Systemics,
Cybernetics and Informatics, invited paper, pages 668–673,
Jul 2000.

[16] H. Yokota and Y. Mimatsu. A scalable disk system with
data reconstruction functions. In R. Jain, J. Werth, and J. C.
Browne, editors, Input/Output in Parallel and Distributed
Computer Systems, Chapter 16. Kluwer Academic Publish-
ers, Jun 1996.

[17] H. Yokota and S. Tomonaga. The Performance of a Highly
Reliable Parallel Disk System. In A. D. Gloria, M. R.
Jane, and D. Marini, editors, Proc. of the World Transputer
Congress ’94, pages 147–160. The Transputer Consortium,
IOS Press, Sep 1994.

