
論文 / 著書情報
Article / Book Information

Title Multi-clock Cycle Paths and Clock Scheduling for Reducing the Area of
Pipelined Circuits

Authors Bakhtiar Affendi Rosdi, Atsushi Takahashi

Citation IEICE Trans. Fundamentals, Vol. E89-A, No. 12, pp. 3435-3442

Pub. date 2006, 12

URL  http://search.ieice.org/

Copyright  (c) 2006 Institute of Electronics, Information and Communication
Engineers

Powered by T2R2 (Science Tokyo Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/


IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006
3435

PAPER Special Section on VLSI Design and CAD Algorithms

Multi-Clock Cycle Paths and Clock Scheduling for Reducing the
Area of Pipelined Circuits

Bakhtiar Affendi ROSDI†a) and Atsushi TAKAHASHI†, Members

SUMMARY A new algorithm is proposed to reduce the number of in-
termediate registers of a pipelined circuit using a combination of multi-
clock cycle paths and clock scheduling. The algorithm analyzes the
pipelined circuit and determines the intermediate registers that can be re-
moved. An efficient subsidiary algorithm is presented that computes the
minimum feasible clock period of a circuit containing multi-clock cycle
paths. Experiments with a pipelined adder and multiplier verify that the
proposed algorithm can reduce the number of intermediate registers with-
out degrading performance, even when delay variations exist.
key words: pipelined circuits, multi-clock cycle paths, clock scheduling

1. Introduction

The sustained progress of VLSI technology has led to in-
creasing wire delays, shrinking clock period and growing
chip size. Circuit pipelining is one technique that has been
used in order to shrink the clock period. Pipelining is a
method in which a circuit is divided into a small number of
stages and intermediate registers are inserted between stages
to store the intermediate data. With this method, extra cir-
cuit area is required to situate the additional intermediate
registers and the size of the clock tree is also increased.

Recently, to overcome this problem, several studies
have been carried out on wave pipelining [1], which is a
method of speeding up the circuit without the insertion of
intermediate registers. However, wave pipelining requires
tighter timing constraints. In wave pipelining, there may
exist a number of ‘waves’ of data in a circuit at any given
time. Therefore, to avoid data collisions, delay balancing is
required, which increases the circuit area.

This paper presents a new algorithm to reduce the num-
ber of intermediate registers of a pipelined circuit by using
a combination of multi-clock cycle paths and clock schedul-
ing. A multi-clock cycle path is a path from register to
register where data transmission takes more than one clock
period. Note that in wave pipelining, all paths are multi-
clock cycle paths. Introducing a multi-clock cycle path into
a pipelined circuit allows some intermediate registers to be
removed. However, as mentioned above, certain timing
constraints must be satisfied. Therefore, there is a trade-
off between area reduction from register removal and area

Manuscript received March 13, 2006.
Manuscript revised June 13, 2006.
Final manuscript received August 1, 2006.
†The authors are with the Department of Communications and

Integrated Systems, Tokyo Institute of Technology, Tokyo, 152-
8550 Japan.

a) E-mail: fendi@lab.ss.titech.ac.jp
DOI: 10.1093/ietfec/e89–a.12.3435

increase from delay balancing. Clock scheduling is a tech-
nique in which the clock skew of a register is intentionally
introduced to improve circuit performance by relaxing the
timing constraints. Using clock scheduling, more interme-
diate registers can be removed, without the need for delay
balancing.

The minimum feasible clock period in terms of clock
scheduling is obtained by linear programming [2], by graph-
theoretic approaches with binary search [3], [4], or by graph-
theoretic approaches without binary search [5]. Graph-
theoretic approaches are based on construction of a con-
straint graph that represents various constraints and which
can handle a circuit of practical size. The constraints are
feasible if and only if the constraint graph contains no nega-
tive cycle. In graph-theoretic approaches with binary search
[4], the Bellman-Ford shortest path algorithm is used to de-
cide whether the graph contains a negative cycle and a sim-
ple negative cycle detection method is employed to increase
speed. The algorithm proposed in [4] is for a circuit that
contains single-clock cycle paths only. However, when the
algorithm [4] is applied to a circuit containing multi-clock
cycle paths, there are some cases for which the minimum
feasible clock period cannot be determined. The clock pe-
riod for such a circuit is bounded above, unlike the situation
for a circuit containing only single-clock cycle paths. This
range of feasible clock periods has to be taken into account
in clock-schedule design.

In this paper, we initially discuss the constraints on a
circuit containing multi-clock cycle paths. These constraints
take into account the range of feasible clock periods required
to make the circuit tolerant of clock jitter and delay varia-
tion. Using the constraints, we enhance the algorithm in [4]
to find the minimum feasible clock period of a circuit that
contains multi-clock cycle paths. A negative cycle exists
in the constraint graph whenever the constraints are infea-
sible and it is found in the algorithm. The enhanced mini-
mum clock-period algorithm uses the information from the
found negative cycle to narrow the binary search interval
efficiently. Then, we propose an algorithm to reduce the
number of intermediate registers of a pipelined circuit by
introducing multi-clock cycle paths with clock scheduling.
An intermediate register is a register that stores one of the
data between the stages of the data flow. Here we consider
a pipelined circuit such as adder or multiplier, whose data
flow is in one way without any feedback. However, we be-
lieve that our algorithm can be enhanced so that it can be
used to a pipelined circuit with feedback. In the proposed

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers



3436
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

algorithm, all intermediate registers of the pipelined circuit
are initially removed. Then the minimum feasible clock pe-
riod of the resulting circuit under the condition that the tar-
get clock-period range is secured is computed by the pro-
posed minimum clock-period algorithm. If this value is too
high, i.e. greater than the target minimum clock period, then
intermediate registers are repeatedly inserted into the multi-
clock cycle paths until the minimum feasible clock period
has been sufficiently reduced.

Experiments with a pipelined adder and multiplier ver-
ify that, given a particular target clock-period range, the pro-
posed algorithm can reduce the number of intermediate reg-
isters, even when delay variations are present.

2. Preliminaries

We consider a circuit with a single clock consisting of regis-
ters linked by combinatorial circuits. The clock timing s(v)
of register v is the difference in clock signal arrival time be-
tween v and an arbitrarily chosen (perhaps hypothetical) ref-
erence register. The set of clock timings is called a clock-
schedule.

We make the basic assumption that a circuit works cor-
rectly if the following two types of constraint are satisfied
for each register pair with signal propagation [2], [6]:

Setup Const. : s(u) − s(v) ≤ βu,vT − dmax(u, v)
Hold Const. : s(v) − s(u) ≤ dmin(u, v) − αu,vT

where T is the clock period, dmax(u, v) (dmin(u, v)) is the max-
imum (minimum) propagation delay from register u to regis-
ter v along a combinatorial circuit, and βu,v and αu,v are given
constants (βu,v > αu,v ≥ 0). Note that for a pair of registers
with a single-clock cycle path, βu,v and αu,v are given by 1
and 0, respectively. This formulation is sufficiently general
to deal with multi-clock cycle paths, a mixture of positive-
edge and negative-edge registers, latch based circuitry, and
multi-clocks that have different periods.

If αu,v is 0 for every pair, the feasible clock period has
no upper bound, i.e. if the clock period T is feasible then any
T
′
(where T

′ ≥ T ) is feasible. However, the feasible clock
period is bounded above if αu,v is not 0 for some pair (u, v).

From the above constraints, when the clock schedule
and the signal propagation delay are known, the minimum
and maximum feasible clock period, Tmin and Tmax, can
be determined from the setup and hold constraints, respec-
tively.

If the clock timing is not fixed, then Tmin and Tmax de-
pend on each other. Tmin has to be minimized under the con-
straint that the circuit works correctly throughout a certain
clock-period range, in order for the circuit to tolerate clock
jitter and delay variation. The above constraints become:

(1) Setup Const. :
s(u) − s(v) ≤ βu,vTmin − dmax(u, v)
(2) Hold Const. :
s(v) − s(u) ≤ dmin(u, v) − αu,vδ − αu,vTmin

where δ is the clock-period range, i.e. δ = Tmax − Tmin.
Therefore if δ is given, then, by using the above constraints,
clock timings can be determined so that the circuit works
correctly for a clock period between Tmin and Tmin+δ. In the
following, our target is to minimize Tmin under the constraint
that the circuit is feasible throughout the given clock-period
range, i.e. that constraints (1) and (2) hold.

These constraints are represented by the constraint
graph G(V, E) of the circuit, which is defined as follows:
a vertex v ∈ V corresponds to a register; a directed edge
(u, v) ∈ E corresponds to either type of constraint; an
edge (u, v) corresponding to the setup (hold) constraint is
called a Z-edge (D-edge), and the weight w(u, v) of (u, v) is
βv,uT − dmax(v, u)(dmin(u, v) − αu,vδ − αu,vT ). The constraint
graph G corresponding to clock period t and clock-period
range δ is denoted by Gδ(t). We may denote Gδ(t) as G(t) if
no confusions occur.

In the following we assume that δ is given as constant.
In a constraint graph G, for any cycle C, the cycle weight
w(C) is the sum of edge weights over the cycle. The cycle
weight can be expressed as kT − w, where T is the clock
period and k and w are constants.

Definition 1: In the constraint graph G, a cycle C for
which w(C) = kT − w is said to be of type 0, type P, or
type M, as k = 0, k > 0, or k < 0, respectively.

Theorem 1: Let C be a negative cycle in the constraint
graph G(t). If C is of type 0, then for any t

′
, there exists

a negative cycle in the constraint graph G(t
′
).

Theorem 2: Let C be a cycle in the constraint graph G
such that w(C) = kT − w. If C is of type P, then for any
t < w/k, there exists a negative cycle in the constraint graph
G(t), whereas, if C is of type M, then for any t > w/k, there
exists a negative cycle in the constraint graph G(t).

Definition 2: Let C be a cycle in the constraint graph G
such that w(C) = kT − w. Then Bound(C) = w/k, w/k, or
∞, according to whether C is of type P, type M, or type 0,
respectively.

Example: The constraint graph G1
0 of the circuit shown

in Fig. 1(a) where clock-period range δ = 0 is shown in
Fig. 1(b). In G1

0, the cycle C1 = (u, w2, v2, u) with w(C1) =
4T − 20 is of type P and Bound(C1) = 5. The cycle

Fig. 1 (a) Circuit containing multi-clock cycle paths. (b) Constraint
graph G1. (c) Min. clock-period computation by the algorithm shown in
[4]. (d) Min. clock-period computation by the proposed algorithm.



ROSDI and TAKAHASHI: MULTI-CLOCK CYCLE PATHS FOR REDUCING THE AREA OF PIPELINED CIRCUITS
3437

C2 = (u, v1, w1, u) with w(C2) = −T + 6 is of type M and
Bound(C2) = 6.

Note that, in a constraint graph of a circuit that con-
tains just single-clock cycle paths, only type P and type 0
cycles can exist, whereas in a constraint graph of a circuit
that contains multi-clock cycle paths, all three cycle types
can be present.

3. Minimum Feasible Clock Period

3.1 A Circuit That Contains Just Single-Clock Cycle Paths

The minimum feasible clock period of a circuit that contains
just single-clock cycle paths can be determined by graph-
theoretic approach with binary search [4]. The maximum
signal propagation delay from a register to the same regis-
ter gives a lower bound of feasible clock period. The dif-
ference of the maximum and minimum signal propagation
delay from a register to another register gives also a lower
bound of feasible clock period. They adopt the larger of
these two lower bounds as an initial lower bound L of the
binary search. They adopt the maximum signal propagation
delay between registers as an initial upper bound U since it
gives a feasible clock period even in zero clock-skew frame-
work.

In the algorithm proposed in [4], the initial lower bound
L and upper bound U are initially checked. If L is feasible
the algorithm is stopped and output L as the minimum fea-
sible clock period. While, if L is infeasible, U is checked
to confirm there is no negative cycle of type 0. If a nega-
tive cycle of type 0 is found, the circuit is infeasible and the
algorithm is stopped. If U is feasible, the algorithm does
binary search by adjusting the lower and upper bounds to
determine the minimum feasible clock period. Throughout
this paper, the precision ε used in the binary search is 1.

Using the algorithm, let us determine the minimum fea-
sible clock period of the circuit shown in Fig. 2(a). The
constraint graph is independent of the clock-period range δ
since αu,v = 0 for every pair, and there is no upper bound of
the clock period. In this example, initial lower bound L = 2
and initial upper bound U = 6. So, the algorithm does bi-
nary search between 2 and 6 as follows:

1) Check 2(L): Since negative cycle C1 = (u, w, v, u) with
w(C1) = 3T − 10 is found, G2(2) is infeasible. So the

Fig. 2 (a) Circuit containing just single-clock cycle paths. (b) Constraint
graph G2. (c) Min. clock-period computation by the algorithm shown in
[4].

next step is check U.
2) Check 6(U): G2(6) is feasible, so the next step is check

H = (U + L)/2 = 4.
3) Check 4(H): G2(4) is feasible, so 4 becomes new upper

bound U and H = 3.
4) Check 3(H): Since negative cycle C1 = (u, w, v, u) with
w(C1) = 3T − 10 is found, G2(3) is infeasible. Since
U − L = 1, output 4 as the minimum feasible clock
period T .

The check sequence of the algorithm is shown in Fig. 2(c).

3.2 A Circuit That Contains Multi-Clock Cycle Paths

For a circuit that contains just single-clock cycle paths, if
the circuit is infeasible at the initial upper bound U, then the
circuit is infeasible at any clock period. However, for a cir-
cuit that contains multi-clock cycle paths, even if the circuit
is infeasible at initial upper bound U, there are some pos-
sibilities that the circuit is feasible at clock period t (where
t < U or t > U).

When the initial upper bound U is infeasible, the algo-
rithm proposed in [4] concludes that the circuit is infeasible
at any clock period and stop. For example, let us determine
the minimum feasible clock period of the circuit shown in
Fig. 1(a). Here, our target clock-period range δ is 0. Initial
lower bound L = 4 and initial upper bound U = 8. So, the
algorithm does binary search between 4 and 8 as follows:

1) Check 4(L): Since negative cycle C1 = (u, w2, v2, u)
with w(C1) = 4T − 20 is found, G1(4) is infeasible.
So the next step is check U.

2) Check 8(U): Since negative cycle C2 = (u, v1, w1, u)
with w(C2) = −T + 6 is found, G1(8) is infeasible and
the algorithm is stopped.

The check sequence of the algorithm is shown in Fig. 1(c).
As you can see from the above example, the algorithm is
stopped after checking the initial upper bound U and con-
cludes that the circuit is infeasible at any clock period.

However as we mentioned earlier, the conclusion is
correct for a circuit that contains just single-clock cycle
paths, while for the circuit that contains multi-clock cy-
cle paths the conclusion might be incorrect. Therefore, the
above approach might miss the minimum feasible clock pe-
riod. In fact, in this case, the algorithm cannot determine the
minimum feasible clock period which is 5.

We enhance the algorithm that has been introduced in
[4] to determine the minimum feasible clock period of a cir-
cuit that contains multi-clock cycle paths. The enhanced al-
gorithm does binary search between lower and upper bounds
same as in the algorithm in [4]. We extend the algorithm in
[4] by introducing checking the type of cycle when a nega-
tive cycle is found in the constraint graph Gδ(t). If the circuit
is infeasible at given clock period t, a negative cycle is found
in Gδ(t). The lower and upper bounds are adjusted based on
the type of the found negative cycle and the Bound value.

The new algorithm to determine the minimum feasi-
ble clock period of a circuit that contains multi-clock cycle



3438
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Input: constraint graph Gδ(t)
Output: minimum feasible clock period T .

1. Lself := max(u,u)∈Ehold dmax(u, u).
Ldiff := max(u,v)∈Ehold (dmax(u, v) − dmin(u, v)).
L := max{Lself , Ldiff}.
U := max(u,v)∈Ehold {(dmax(u, v) + s(u) − s(v))/βu,v}.

2. Check whether Gδ(L) is feasible.
If there is no negative cycle in Gδ(L) return L,
else if there exists a negative cycle C of type 0 or type M
return∞.

3. Check whether Gδ(U) is feasible.
If there exists a negative cycle C:

Case C is of type 0 return∞.
Case C is of type P then repeat the following:

L := Bound(C).
If there is no negative cycle in Gδ(L) return L,
else if there exists a negative cycle C

′
.

If C
′

is of type 0 or type M return∞,
else C ← C

′
.

Case C is of type M then U := Bound(C) and
if U < L return∞.

4. While (U − L > ε) do:
H := (U + L)/2.
Check whether Gδ(H) is feasible.
If there is no negative cycle in Gδ(H) then U := H,
else let C be a negative cycle:

Case C is of type 0 return∞.
Case C is of type P then:

L := Bound(C).
If there is no negative cycle in Gδ(L) return L,
else if there exists a negative cycle C

′
of type 0

or type M return∞.
Case C is of type M then U := Bound(C).

endwhile.
5. T := U. return T .

Fig. 3 Minimum feasible clock period algorithm of the circuit that con-
tains multi-clock cycle paths.

paths is shown in Fig. 3.
For the initial value of lower bound L and upper bound

U of the binary search, we adopt the same approach as in
the algorithm shown in [4]. Initial lower bound L will be
checked whether it is feasible or not, if L is feasible, then
output L as the minimum feasible clock period. Otherwise,
a negative cycle C is found. If C is of type 0 or type M, the
circuit is infeasible and the algorithm is stopped. While, if C
is of type P then the initial upper bound U will be checked
whether it is feasible or not.

If the initial upper bound U is feasible, then the algo-
rithm does binary search to determine the minimum feasible
clock period. Otherwise, a negative cycle C is found. In case
C is of type 0, the circuit is infeasible and the algorithm is
stopped. In case C is of type P, Bound(C) is our new lower
bound L and L will be checked whether it is feasible or not.
If our new lower bound L is feasible then output L as the
minimum feasible clock period. Otherwise, repeat until L is
feasible or a found negative cycle is of type 0 or type M,
where the circuit is infeasible and the algorithm is stopped.
In case C is of type M, Bound(C) is our new upper bound
U and the algorithm will check whether U < L or not. If

Fig. 4 (a) If the found negative cycle C is of type P then L = Bound(C)
and check L. (b) If the found negative cycle C is of type M then U =
Bound(C).

U < L, then the circuit is infeasible and the algorithm is
stopped. Otherwise, our algorithm does binary search by
adjusting the lower and upper bounds to determine the min-
imum feasible clock period.

In binary search, the algorithm will check whether the
constraint graph Gδ(H) (where H = (U + L)/2) contains
any negative cycle or not. If there are no negative cycles in
Gδ(H), then H is our new upper bound U and continue do bi-
nary search. Otherwise, negative cycle C is found in Gδ(H)
and the algorithm will check the type of it. In case C is of
type 0, the circuit is infeasible and the algorithm is stopped.
In case C is of type P, Bound(C) is our new lower bound
L from Theorem 2, and L will be checked whether it is fea-
sible or not (Refer Fig. 4(a)). If our new lower bound L is
feasible then output L as the minimum feasible clock period,
otherwise, continue do binary search. In case C is of type
M, Bound(C) is our new upper bound U (Refer Fig. 4(b)),
and continue do binary search.

Using the proposed algorithm, let us find the minimum
feasible clock period of the circuit shown in Fig. 1(a). Here,
our target clock-period range δ is 0. Initial lower bound L =
4 and initial upper bound U = 8. So, the algorithm does
binary search between 4 and 8 as follows:

1) Check 4(L): Since negative cycle C1 = (u, w2, v2, u)
with w(C1) = 4T − 20 is found, G1(4) is infeasible.
C1 is of type P, so the next step is check U.

2) Check 8(U): Since negative cycle C2 = (u, v1, w1, u)
with w(C2) = −T +6 is found, G1(8) is infeasible. C2 is
of type M and Bound(C2) = 6, therefore 6 is our new
U and H = 5.

3) Check 5(H): G1(5) is feasible. Since U − L = 1, output
5 as the minimum feasible clock period T .

The check sequence of the algorithm is shown in Fig. 1(d).
The algorithm can determine the minimum feasible clock
period of the circuit which is 5.

In Step 4 of the proposed algorithm, when H is checked
and the type of the found negative cycle is of type P, the
lower bound L is updated and checked. However, in Step
2 and Step 4, when L is checked and the type of the found
negative cycle is of type P, the lower bound L has not been
updated. The reason is, if we just update the lower bound
L value without checking whether it is feasible or not, the
checking of this value is postponed until binary search range
reaches the precision ε. Unluckily, if that updated value is
the minimum feasible clock period, it increases the num-



ROSDI and TAKAHASHI: MULTI-CLOCK CYCLE PATHS FOR REDUCING THE AREA OF PIPELINED CIRCUITS
3439

ber of checking times. While, if the updated lower bound L
value is checked and it is infeasible due to type P negative
cycle and this is repeated, then the number of checking times
increases, especially, when the amount of the increasing of
the lower bound L is small. Therefore, in our proposed al-
gorithm, when the lower bound L is checked and it is infea-
sible, we do not update the lower bound L value based on
the found negative cycle.

4. Reduction on the Number of Intermediate Registers

In this paper we consider a problem on how to reduce the
number of intermediate registers of a pipelined circuit, sub-
ject to the minimum feasible clock period is lower than or
equal to the original circuit and works at target clock-period
range. In the proposed algorithm, all intermediate registers
of the pipelined circuit are initially removed. Then the min-
imum feasible clock period is computed using the algorithm
shown in Fig. 3.

A D-edge (Z-edge) which corresponds to the single-
clock cycle path is called single D-edge (single Z-edge).
While D-edge (Z-edge) which corresponds to the multi-
clock cycle path is called multi D-edge (multi Z-edge).
When an intermediate register is removed, the weight of
Z-edge and D-edge of the constraint graph are changed, as
well as its topology. As for example, when an intermedi-
ate register v is removed, single-clock cycle paths (u, v) and
(v, w) whose total minimum (maximum) delay is σ (σ

′
) be-

come two-clock cycle path (u, w) whose minimum (maxi-
mum) delay is σ − ω (σ

′ − ω′), where ω (ω > 0) and ω
′

are the minimum and maximum delay of the intermediate
register v, respectively. In the constraint graph of the cir-
cuit, the single D-edges (u, v) and (v, w) whose total weight
is σ are removed and a multi D-edge (u, w) whose weight is
σ − ω − T is inserted. Similarly, the single Z-edges (w, v)
and (v, u) whose total weight is 2T − σ′ are removed and
a multi Z-edge (w, u) whose weight is 2T − σ′ − ω′ is in-
serted. The weight of the multi D-edge is reduced compared
with the corresponding original single D-edges. While the
weight of the multi Z-edge is increased compared with the
corresponding original single Z-edges.

When an intermediate register is removed, the obtained
circuit may become infeasible or the minimum feasible
clock period of the obtained circuit may be increased. If
the circuit is infeasible at any clock period, a negative cy-
cle is found in the constraint graph and it contains a multi
D-edge. When the intermediate register which corresponds
to a multi D-edge is inserted, the number of multi D-edges
in the found negative cycle is reduced, and the negative cy-
cle is eliminated by repeated intermediate register insertion.
If the minimum feasible clock period of the circuit is in-
creased, a critical cycle is found in the constraint graph and
it contains a multi D-edge. When the intermediate register
which corresponds to a multi D-edge is inserted, the num-
ber of multi D-edges in the found critical cycle is reduced,
and the critical cycle is eliminated by repeated intermediate
register insertion.

Inputs : Constraint graph Gin of a pipelined circuit with intermediate
registers, the minimum clock period (zero clock-skew) Tcomp of the
original circuit and clock-period range δ.

Outputs : Constraint graph Gout
0 of the circuit after removing the in-

termediate registers, clock timing s(u) and minimum clock period
Tmin(Gout

0 ).
Step 0 : Remove all of the intermediate registers. Let Gδ be the constraint

graph of the obtained circuit.
Step 1 : Compute the minimum clock period of the constraint graph Gδ

by the algorithm shown in Fig. 3. If the output of the algorithm is ∞
then a negative cycle C is found, and insert the intermediate register
to the multi-clock cycle path which corresponds to a multi D-edge
contained in C, and update Gδ. Repeat this step until the output of
the algorithm is not ∞.

Step 2 : Let G1
δ be the constraint graph of the obtained circuit.

Step 3 : Compute the minimum clock period of the constraint graph G1
δ

by the algorithm shown in Fig. 3. If Tmin(G1
δ) > Tcomp then a critical

cycle C1 is found, and insert the intermediate register to the multi-
clock cycle path which corresponds to a multi D-edge contained in
C1, and update G1

δ . Repeat this step until Tmin(G1
δ) ≤ Tcomp.

Step 4 : Let Gout
0 be the constraint graph of the obtained circuit and output

Gout
0 , Tmin(Gout

0 ) and the clock timing for all registers.

Fig. 5 Algorithm to reduce the number of intermediate registers.

Fig. 6 Pipelined circuit with intermediate registers and the correspond-
ing constraint graph Gin. Tcomp = 10.

Our algorithm is heuristic. A different circuit might
be obtained depending on the found negative and critical
cycle. Furthermore, if there are more than one multi D-edge
in negative or critical cycle, our algorithm chooses one of
them randomly. Thus, a different circuit might be obtained
depending on the chosen multi D-edge.

The details of our proposed algorithm is shown in
Fig. 5. Note that, in Step 1 and Step 3 of our proposed al-
gorithm, if there is no more multi D-edge, the algorithm is
stopped and output the input constraint graph.

4.1 Example

To explain the behavior of the algorithm, we apply the al-
gorithm to the pipelined circuit shown in Fig. 6. In this ex-
ample, the timing of each I/O pin is fixed at 0, while the
timing of each register is scheduled. We also assume that
Setup and Hold Time for registers are 0 and the minimum
and maximum delay of the intermediate registers are 1 and
2, respectively. Here, our target clock-period range δ is 4.
Note that in the constraint graph, vertices In and Out are the
same vertex because we fix the timings of I/O pins to 0. In



3440
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

the figure, vertices In and Out are drawn in different vertex
to make it easy to understand. For the original circuit with
zero clock-skew, the minimum feasible clock period Tcomp

is 10. The circuit after removing the intermediate registers
v0, v1, v2 is shown in Fig. 7. The minimum clock period of
the constraint graph G0

4 is computed by the minimum clock
period algorithm. In the binary search, when T = 9, neg-
ative cycle C0 = (in, u1, w1, out) is found in the constraint
graph G0

4, which is of type M. The minimum clock period
algorithm concludes that it is infeasible. Actually the cir-
cuit works at clock period 6 but δ is not secured. Since
edge (u1, w1) is a multi D-edge, intermediate register v1 is
inserted between the multi-clock cycle path (u1, w1). The
circuit after inserting the intermediate register v1 is shown
in Fig. 8. G1

4 is the constraint graph of the obtained circuit.
The minimum feasible clock period of the obtained circuit
is 11, and critical cycle C1 = (u2, w2, v1, u2) is found in

Fig. 7 Pipelined circuit after removing all intermediate registers and the
corresponding constraint graph G0

4.

Fig. 8 Pipelined circuit after inserting the intermediate register v1 and
the corresponding constraint graph G1

4. Tmin(G1
4) = 11 > Tcomp = 10.

Fig. 9 Pipelined circuit after inserting the intermediate registers v1 and
v2, and the corresponding constraint graph G2

0. Tmin(G2
0) = 7.

the constraint graph G1
4(11) by the minimum clock period

algorithm during the binary search. Since 11 > Tcomp and
edge (u2, w2) is a multi D-edge, intermediate register v2 is
inserted between the multi-clock cycle path (u2, w2). The
circuit after inserting the intermediate register v2 is shown
in Fig. 9. G2

4 is the constraint graph of the obtained circuit.
The minimum feasible clock period of the obtained circuit is
7, which is less than Tcomp, so the algorithm stop and output
the circuit and clock timings as shown in Fig. 9. Note that
in Fig. 9, the clock timings are computed based on the con-
straint graph G2

0. The output circuit works correctly between
7 to 11, while the original circuit works correctly between
10 to∞.

5. Experiments

The proposed algorithms were written in C++ and imple-
mented on a Pentium 4 (CPU 3 GHz, memory 513764 kb).
Since there are no benchmark examples of pipelined cir-
cuits, two simple examples, briefly described below, were
constructed for our experiments.

• n-bit (n = 4, 8, 16) add: A 2-stage adder that added
four n-bit numbers (A, B, C and D) [7]. The first stage
computed the partial sum A + B and C + D and the
second stage computed the final sum. Each adder was
of ripple-carry type.

• 16-bit mul: A 2-stage multiplier that multiplied two
16-bit numbers. The first stage used a carry-save adder
with Wallace tree structure [8] and the second stage
used a carry-look-ahead adder.

The statistics of the circuits are shown in Table 1. The
ROHM 0.35 µm process library was used for these exper-
iments. The timing of each I/O pin was scheduled as well as
the timing for each register.

Table 2 shows the results when the algorithm shown in
Sect. 4 was applied. Ori. is the original circuit containing the
intermediate registers and the clock timing of all registers
are fixed at 0 (zero clock-skew). “δ [ps]” and “Tmin [ps]” are
the target clock-period range and the output minimum feasi-
ble clock period, respectively. “Int. FF (#)” is the number of
intermediate registers, and “Int. FF (%)” is the percentage of
the number of intermediate registers present compared with
the total in the original circuit. Delay variation was 20%
(50%), i.e. the delay variation for each gate and register was

Table 1 Statistics of adder and multiplier.

Circuit delay [ps]

circuit # FF 1st stage 2nd stage

min max min max

4 bitadd 32 588 2454 588 2840

8 bitadd 60 598 4079 598 4474

16 bitadd 116 598 7239 598 7634

16 bitmul 120 757 5075 373 4050



ROSDI and TAKAHASHI: MULTI-CLOCK CYCLE PATHS FOR REDUCING THE AREA OF PIPELINED CIRCUITS
3441

Table 2 Experimental results.

Delay variation = 0% Delay variation = 20% Delay variation = 50%

Circuit δ Tmin Int. FF Time Tmin Int. FF Time Tmin Int. FF Time

[ps] [ps] (%)a # (%) [s] [ps] (%)a (%)b # (%) [s] [ps] (%)a (%)c # (%) [s]

4 bitadd Ori. 2840 (100) 10 (100) - 3093 (110) (100) 10 (100) - 3472 (123) (100) 10 (100) -

0 1422 (50) 0 (0) 0.01 1929 (68) (62) 0 (0) 0.01 2691 (95) (78) 0 (0) 0.01

200 1622 (57) 0 (0) 0.01 2129 (75) (69) 0 (0) 0.01 1986 (70) (57) 10 (100) 0.02

400 1822 (64) 0 (0) 0.01 2329 (82) (75) 0 (0) 0.01 1986 (70) (57) 10 (100) 0.02

600 2022 (71) 0 (0) 0.01 2529 (89) (82) 0 (0) 0.01 1986 (70) (57) 10 (100) 0.02

800 2222 (78) 0 (0) 0.01 2729 (96) (88) 0 (0) 0.01 1986 (70) (57) 10 (100) 0.02

1000 2422 (85) 0 (0) 0.01 1295 (46) (42) 10 (100) 0.02 1986 (70) (57) 10 (100) 0.02

8 bitadd Ori. 4474 (100) 18 (100) - 4890 (110) (100) 18 (100) - 5515 (123) (100) 18 (100) -

0 1702 (38) 0 (0) 0.02 2509 (56) (51) 0 (0) 0.02 3720 (83) (68) 0 (0) 0.02

200 1902 (43) 0 (0) 0.02 2709 (61) (55) 0 (0) 0.02 3920 (88) (71) 0 (0) 0.02

400 2102 (47) 0 (0) 0.02 2909 (65) (59) 0 (0) 0.02 4120 (92) (75) 0 (0) 0.02

600 2302 (51) 0 (0) 0.02 3109 (69) (64) 0 (0) 0.02 4320 (97) (78) 0 (0) 0.02

800 2502 (56) 0 (0) 0.02 3309 (74) (68) 0 (0) 0.02 3007 (67) (55) 18 (100) 0.06

1000 2702 (60) 0 (0) 0.02 3509 (78) (72) 0 (0) 0.02 3007 (67) (55) 18 (100) 0.06

16 bitadd Ori. 7634 (100) 34 (100) - 8366 (110) (100) 34 (100) - 9465 (124) (100) 34 (100) -

0 2199 (29) 0 (0) 0.06 3588 (47) (43) 0 (0) 0.06 5673 (74) (60) 0 (0) 0.06

200 2399 (31) 0 (0) 0.06 3788 (50) (45) 0 (0) 0.06 5873 (77) (62) 0 (0) 0.06

400 2599 (34) 0 (0) 0.06 3988 (52) (48) 0 (0) 0.06 6073 (80) (64) 0 (0) 0.06

600 2799 (37) 0 (0) 0.06 4188 (55) (50) 0 (0) 0.06 6273 (82) (66) 0 (0) 0.06

800 2999 (39) 0 (0) 0.06 4388 (57) (52) 0 (0) 0.06 6473 (85) (68) 0 (0) 0.06

1000 3199 (42) 0 (0) 0.06 4588 (60) (55) 0 (0) 0.06 6673 (87) (71) 0 (0) 0.06

16 bitmul Ori. 5075 (100) 56 (100) - 5551 (110) (100) 56 (100) - 6266 (124) (100) 56 (100) -

0 4870 (96) 11 (20) 0.72 3590 (71) (65) 49 (88) 2.70 4466 (88) (71) 49 (88) 2.70

200 5070 (100) 11 (20) 0.73 3590 (71) (65) 49 (88) 2.69 4466 (88) (71) 49 (88) 2.72

400 5069 (100) 35 (63) 1.97 3590 (71) (65) 49 (88) 2.73 4470 (88) (71) 49 (88) 2.72

600 5071 (100) 48 (86) 2.53 3750 (74) (68) 49 (88) 2.70 4670 (92) (75) 49 (88) 2.75

800 3336 (66) 49 (88) 2.61 3950 (78) (71) 49 (88) 2.71 4870 (96) (78) 49 (88) 2.73

1000 3536 (70) 49 (88) 2.59 4150 (82) (75) 49 (88) 2.73 5070 (100) (81) 49 (88) 2.75
aCompared with original circuit with zero clock-skew and delay variation = 0%.
bCompared with original circuit with zero clock-skew and delay variation = 20%.
cCompared with original circuit with zero clock-skew and delay variation = 50%.

set at ±10% (±25%). In the circuit 16 bitmul of 20% delay
variation, the maximum delay variation between registers is
782 [ps]. The target clock-period range δ is set from 0 [ps]
to 1000 [ps]. “Time[s]” is the computation time of the pro-
posed algorithm.

The results show that by a combination of multi-clock
cycles and clock scheduling, the number of intermediate
registers and the minimum feasible clock period can be re-
duced, even in the presence of delay variations in gates and
registers.

Note that, our algorithm can determine efficiently
which register must be recover back, in order to reduce
the minimum feasible clock period of the circuit. As you

can see from the circuit 16 bitmul (delay variation = 0%,
δ = 600 [ps], 800 [ps]), by recovering back only one regis-
ter, the minimum feasible clock period can be reduced from
5071 [ps] to 3336 [ps].

The relation between the minimum feasible clock pe-
riod and the number of intermediate registers of the 16 bit
multiplier is shown in Fig. 10. In the graph, the label “Al-
gorithm” indicates results using the proposed algorithm for
insertion of the intermediate registers, while “Random1-4”
labels indicate results when the intermediate registers are
inserted randomly. The graph shows that the proposed algo-
rithm can construct an equivalent circuit using fewer regis-
ters and with a smaller minimum feasible clock period.



3442
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Fig. 10 Relation between Tmin [ps] and # Int. FF of a 16 bit multiplier.
δ = 1000 [ps]. Delay variation = 0%.

6. Conclusion

It has been shown that the number of intermediate regis-
ters of a pipelined circuit can be reduced by implement-
ing a multi-clock cycle path technique together with clock
scheduling. The proposed algorithm inserts intermediate
registers without considering delay balancing in order to
make the circuit works correctly throughout the target clock-
period range. We believe that by using delay balancing to-
gether with intermediate register insertion, circuit area can
be further reduced. This is a topic for future investigation.

Acknowledgements

This work is supported by VLSI Design and Education Cen-
ter (VDEC), the University of Tokyo in collaboration with
Synopsys, Inc., Cadence Design Systems, Inc., Rohm Cor-
poration and Toppan Printing Corporation.

References

[1] W.J. Kim and Y. Kim, “Clocking for correct functionality on wave
pipelined circuits,” Proc. IEEE International ASIC/SOC Conference,
pp.161–164, 2003.

[2] J.P. Fishburn, “Clock skew optimization,” IEEE Trans. Comput.,
vol.39, no.7, pp.945–951, 1990.

[3] R.B. Deokar and S.S. Sapatnekar, “A graph-theoretic approach to
clock skew optimization,” Proc. International Symposium on Circuits
and Systems (ISCAS), pp.407–410, 1994.

[4] A. Takahashi, “Practical fast clock schedule design algorithms,” Proc.
18th Karuizawa Workshop, pp.515–520, 2005.

[5] A. Takahashi and Y. Kajitani, “Performance and reliability driven
clock scheduling of sequential logic circuits,” Proc. Asia and South
Pacific Design Automation Conference (ASP-DAC), pp.37–42, 1997.

[6] B.A. Rosdi and A. Takahashi, “Reduction on the usage of intermedi-
ate registers for pipelined circuits,” Proc. Workshop on Synthesis and
System Integration of Mixed Technologies (SASIMI 2004), pp.333–
338, 2004.

[7] S. Malik, K.J. Singh, R.K. Brayton, and A. Sangiovanni-Vincentelli,
“Performance optimization of pipelined circuits,” Proc. IEEE/ACM
International Conference on Computer Aided Design (ICCAD),
pp.410–413, 1990.

[8] C. Wallace, “A suggestion for fast multiplier,” IEEE Trans. Electronic
Computers, vol.13, no.2, pp.14–17, 1964.

Bakhtiar Affendi Rosdi received his B.E.,
and M.E. degrees in electrical and electronic en-
gineering from Tokyo Institute of Technology,
Tokyo, Japan, in 1999 and 2004, respectively.
He is currently a D.E. student of Department of
Communications and Integrated Systems in To-
kyo Institute of Technology. His research inter-
ests are in VLSI design automation and combi-
national algorithms.

Atsushi Takahashi received his B.E., M.E.,
and D.E. degrees in electrical and electronic en-
gineering from Tokyo Institute of Technology,
Tokyo, Japan, in 1989, 1991, and 1996, respec-
tively. He had been with the Tokyo Institute of
Technology as a research associate from 1991 to
1997 and has been an associate professor since
1997. He visited University of California, Los
Angeles, U.S.A., as a visiting scholar from 2001
to 2002. He is currently with Department of
Communications and Integrated Systems, Grad-

uate School of Science and Engineering, Tokyo Institute of Technology.
His research interests are in VLSI layout design and combinational algo-
rithms. He is a member of IEEE and IPSJ.


