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Practical Fast Clock-Schedule Design Algorithms∗

Atsushi TAKAHASHI†a), Member

SUMMARY In this paper, a practical clock-scheduling engine is intro-
duced. The minimum feasible clock-period is obtained by using a modi-
fied Bellman-Ford shortest path algorithm. Then an optimum cost clock-
schedule is obtained by using a bipartite matching algorithm. It also pro-
vides useful information to circuit synthesis tools. The experiment to a
circuit with about 10000 registers and 100000 signal paths shows that a
result is obtained within a few minutes. The computation time is almost
linear to the circuit size in practice.
key words: clock-schedule, shortest path, negative cycle detection, semi-
synchronous circuits

1. Introduction

Due to the difficulty of clock-distribution and the increase
of instantaneous power consumption and noise, the circuit
design methodology without zero clock-skew is becoming
popular. However, a layout-aware clock-schedule design
methodology that takes the feasibility and efficiency of lay-
out into account is not established yet. In this paper, we pro-
pose two efficient algorithms that determine the minimum
feasible clock-period and a minimum cost schedule which
are essential to obtain a layout-aware clock-schedule.

In the circuit synthesis tools, clock-scheduling is exe-
cuted many times as a subroutine. Therefore, the computa-
tion time is the prime subject. Moreover, it should handle
various constraints derived from various design styles such
as the minimum and maximum clock-timing for each regis-
ter, latch based circuitry, and multi-clock-cycle signal paths,
etc.

The minimum feasible clock-period in terms of clock-
scheduling is better to be known in clock-scheduling, since
it is an important index of the constraints. The minimum
feasible clock-period is obtained by linear programming
[2], [3], by graph-theoretic approaches with binary search
[4]–[7], or by graph-theoretic approaches without binary
search [8], [9]. However, the method using linear program-
ming which can handle at most several thousands of reg-
isters is not practical. While, graph-theoretic approaches
which construct a constraint graph that represents various
constraints can handle a circuit of practical size. The con-
straints are feasible if and only if the constraint graph con-
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tains no negative cycle. Let n and m be the number of reg-
isters and the number of register pairs with signal path, re-
spectively. The minimum clock-period is obtained by us-
ing O(nm) Bellman-Ford shortest path algorithm with bi-
nary search [4]–[6]. The exact minimum clock-period is ob-
tained in O(n2m) by using the minimum cycle Z-mean algo-
rithm [8] which is a generalization of the maximum cycle-
mean algorithm [10], and obtained in O(nm + n2 log n) [9]
by using parameterized shortest path algorithm [11].

In this paper, first, we propose a more efficient
Bellman-Ford based algorithm that decides whether the
graph contains a negative cycle or not. The original
Bellman-Ford shortest algorithm is very time-consuming if
the graph contains a negative cycle since it requires n rep-
etitions of update procedure. Therefore, negative cycle de-
tection methods are required to handle a graph that corre-
sponds to a larger circuit [12]. In our proposed algorithm,
the simple negative cycle detection method is adopted. The
overhead when there is no negative cycle in a graph is neg-
ligible. The time complexity of our proposed algorithm is
O(km + k2n) where k is the maximum number of distinct
edges in a shortest trail in the graph which can be regarded
as a small constant in most cases. By using this decision
algorithm, the minimum clock-period with certain precision
is obtained by binary search.

The second algorithm is a minimum cost scheduling al-
gorithm. In general, there are a lot of clock-schedules that
satisfy the constraints. Therefore, clock-scheduling can be
used to improve the circuit reliability [7]–[9], [13]–[15] and
other objectives such as area, wire length and power. In or-
der to use the design margin for other objectives, we assume
that the target clock-timing is given for each register. We de-
fine the sum of difference between the obtained clock-timing
in the clock-schedule and the target clock-timing for every
register as the cost of clock-scheduling as in [16]. The algo-
rithm in [16] computes repeatedly a maximum matching of a
bipartite graph and obtains a minimum cost clock-schedule
efficiently. However, in [16], how to handle the maximum
and minimum clock-timing constraints is not discussed. We
extend their algorithm to handle these timing constraints.
Although the total time complexity is O(n2m), the efficiency
of the algorithm is shown empirically.

Our clock-scheduling engine computes the minimum
feasible clock-period and obtains a minimum cost clock-
schedule by using proposed algorithms. Then, our engine
defines the range of clock-timing of each register so that ev-
ery constraint is satisfied whenever the clock-timing is re-
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alized within each defined range. The engine also provides
useful information to the circuit synthesis tools. In exper-
iments to circuits with up to about ten thousand registers,
we show that the minimum feasible clock-period and a min-
imum cost schedule are obtained within a few minutes by
our engine.

2. Preliminaries

We consider a circuit with a single clock consisting of reg-
isters and combinatorial circuits between them. The clock-
timing s(v) of register v is the difference in clock arrival time
between v and an arbitrary chosen (perhaps hypothetical)
reference register. The set of clock-timings is called a clock-
schedule.

We assume the framework that a circuit works correctly
if the following two types of constraints are satisfied for each
register pair with signal propagation [2]:

Hold Const. : s(v) − s(u) ≤ dmin(u, v)
Setup Const. : s(u) − s(v) ≤ T − dmax(u, v)

where T is the clock-period and dmax(u, v) (dmin(u, v)) is in-
tuitively the maximum (minimum) propagation delay from
register u to register v along a combinatorial circuit. More
precisely, dmax(u, v) is defined as d′max(u, v) + setup(v) +
margins(v) where d′max(u, v) (≥ 0), setup(v) (≥ 0), and
margins(v) (≥ 0) are the maximum propagation delay from
u to v, the setup-time of register v, and the predefined tim-
ing margin of v, respectively. Similarly, dmin(u, v) is defined
as d′min(u, v) − hold(v) − marginh(v) where d′min(u, v) (≥ 0),
hold(v) (≥ 0), and marginh(v) (≥ 0) are the minimum prop-
agation delay from u to v, the hold-time of register v, and
the predefined timing margin. The timing margin is used to
secure the feasibility in realizing clock-timing and to secure
the reliability of the circuit. Note that dmin(u, v) could be
negative if the minimum propagation delay d′(u, v) is small.

Multi-clock-cycle signal paths are often used in a con-
ventional zero clock-skew design in order to avoid the per-
formance limitation caused by the maximum signal delay
between registers. The constraints for a register pair with
signal propagation defined as above are extended so that
they correspond to general situations [17]:

Hold Const. : s(v) − s(u) ≤ −αu,vT + dmin(u, v)
Setup Const. : s(u) − s(v) ≤ βu,vT − dmax(u, v)

where αu,v and βu,v are given constants for each pair (0 ≤
αu,v < βu,v). Note that, for a pair with single-clock-cycle
signal path, αu,v and βu,v are given as 0 and 1, respectively.
This formulation enables us to handle multi-clock-cycle sig-
nal paths, mixture of positive-edge and negative-edge regis-
ters, latch based circuitry, and multi-clocks that have differ-
ent periods, etc. Note that the feasible clock-period has no
upper bound if αu,v is 0 for every pair. That is, if T is feasi-
ble then for any T ′ (≥ T ) is feasible. However, the feasible
clock-period has an upper bound if αu,v is not 0 for some
pairs.

In designing a block, a subcircuit, the input and out-
put timings of I/O pins of the block are fixed or constrained
by the other parts. An arbitrary large difference of clock-
timings in clock-schedule is impractical. Therefore, we are
often requested to handle the upper bound u(v) and the lower
bound l(v) of clock-timing of register v. In such cases, we
prepare the virtual register whose clock-timing is fixed to 0
as used in [6], [9]. The constraints on the upper and lower
bounds of clock-timing are described in terms of the virtual
signal path from/to the virtual register.

These constraints are represented by the constraint
graph. The constraint graph G(V, E) is defined as follows:
a vertex v ∈ V corresponds to a register, a directed edge
(u, v) ∈ E corresponds to either type of constraints; edge
(u, v) corresponding to the hold (setup) constraint is called
hold-edge (setup-edge), and the weight w(u, v) of (u, v) is
−αu,vT + dmin(u, v) (βu,vT − dmax(v, u)). Let Ehold and Esetup

be the set of hold-edges and the set of setup-edges, respec-
tively. The constraint graph G when the clock-period is t
is denoted by Gt. Similarly, weight w(u, v) when the clock-
period is t is denoted by wt(u, v).

For clock-schedule s in clock-period t, edge (u, v) in Gt

is said to be legal if s(v) − s(u) ≤ wt(u, v), illegal otherwise.
A clock-schedule is called feasible in clock-period t if there
is no illegal edge in Gt. The slack of edge (u, v) for clock-
schedule s in clock-period t is defined as

∆s,t(u, v) = s(u) + wt(u, v) − s(v).

If the slack of an edge is 0, the edge is said to be critical.
A cycle (path) consisting of critical edges is called a critical
cycle (path). Note that the constraints can be satisfied if and
only if G contains no negative cycle [6], [8], [18]. The small-
est clock-period t such that G contains no negative cycle is
denoted by T (G). Note that there exists a critical cycle in Gt

for a feasible clock-schedule if and only if the clock-period
t is T (G).

3. Minimum Feasible Clock-Period

By using constraint graph, we can decide whether the given
clock-period is feasible or not. The clock-period t is feasible
if and only if the constraint graph Gt contains no negative
cycle. The detection of negative cycle in a directed graph
is possible by using Bellman-Ford shortest path algorithm.
The distance of a vertex from an arbitrary chosen vertex r,
called root, is defined as the weight of a shortest trail whose
weight is minimum among all trails that connect between
root r and the vertex. The weight of a trail is the sum of
edge weights in the trail in which the multiple occurrences
of edges are allowed. If the distance of every vertex is finite,
then there is no negative cycle in the graph and Bellman-
Ford shortest path algorithm converges. The famous Dijk-
stra shortest path algorithm is not applicable since the graph
contains edges with negative weight.

If there is no negative cycle in the constraint graph,
Bellman-Ford algorithm converges in early stages since the
number of distinct edges in a shortest trail is much smaller
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than the number of vertices in the constraint graph extracted
from a circuit. However, if there are negative cycles, the
update procedure in Bellman-Ford algorithm is repeated as
many times as the number of vertices since Bellman-Ford
algorithm does not converge. Thus, a negative cycle detec-
tion strategy is required to detect a negative cycle in early
stages. There are several negative cycle detection strate-
gies [12]. Among them, we adopt the simplest one called
“walk to the root.” In [12], “walk to the root” was con-
cluded as a slow one since the overhead of “walk to the root”
for grid graphs, which have larger radius compared with the
constraint graph, is significantly larger than other strategies.
However, the overhead for the constraint graph is less than
1% in our experiments which is small enough.

In the strategy “walk to the root,” a negative cycle is
detected if root r is not reachable from a vertex by follow-
ing parent pointers. In [12], the checking from vertex u that
follows parent pointers is executed before labeling opera-
tion with respect to edge (u, v). If vertex v is contained in
the route from u to r, then labeling operation to v from u
creates a cycle and a negative cycle is detected. Otherwise
the labeling operation does not create a cycle. In our pro-
posed algorithm, the checking from u is executed after all
labeling operations to the neighbors of u are done. If a cycle
is created by these operations, the cycle contains u, that is,
u is contained in the route from u. Otherwise, r is reachable
from u. Moreover, the our algorithm detects a negative cycle
if the labeling operation to root r is done.

Our proposed negative cycle detection algorithm is
shown in Fig. 1. Let n, m, and k be the number of vertices,
the number of edges, and the number of distinct edges in a
shortest trail, respectively. The time complexity of initial-
ization (steps 1, 2, and 3), the labeling operation and “walk

Procedure IsNoNegCycle( G(V, E), T )
Input: constraint graph G, target clock-period T .
Output: Yes or No.

1. Construct GT , choose r ∈ V, Q1 ← ∅, Q2 ← ∅. /* init */
2. for all v ∈ V let d(v) := ∞. /* distance from r */
3. d(r) := 0, push r to Q1.
/* update procedure (steps 4–15) */

4. while Q1 is not empty do
5. u← pop(Q1).
6. for all v adjacent to u in G do
7. if d(v) > d(u) + wT (u, v) then

/* labeling operation (steps 8–10) */
8. d(v) := d(u) + wT (u, v).
9. set parent pointer from v to u.

10. push v to Q2 if v is not in Q2.
11. endif
12. endfor
13. if r is in Q2 return “No.” /* negative cycle exists */
14. if reach u by following parent pointer from u

return “No.” /* negative cycle exists */
15. endwhile
16. if Q2 is empty return “Yes.” /* no negative cycle */
17. Q1 ← Q2, Q2 ← ∅, goto step 4.

Fig. 1 Negative cycle detection by bellman-ford with walk to the root
(Decision algorithm).

to the root” (steps 13 and 14), are O(n), O(1), and O(k),
respectively. In each update procedure, the labeling opera-
tion and step 14 are executed at most m times and at most
n times, respectively. The update procedure is repeated k
times. Therefore, the time complexity of the algorithm is
O(km + k2n). Note that the time complexity of the algo-
rithm based on “walk to the root” before labeling opera-
tion is O(k2m), which is larger than our proposed algorithm,
though the difference in computation times is very small in
experiments.

By using proposed negative cycle detection algorithm,
we can check whether the given clock-period is feasible or
not. In order to use this algorithm in binary search, we need
to find lower and upper bounds of the minimum feasible
clock-period. The maximum signal propagation delay from
a register to the same register gives a lower bound of feasi-
ble clock-period. The difference of the maximum and min-
imum signal propagation delays from a register to another
register gives also a lower bound of clock-period. We adopt
the larger of these two lower bounds as the lower bound of
the binary search. In case αu,v is 0 for each pair, there is no
upper bound in feasible clock-period. We adopt the maxi-
mum signal propagation delay between registers as an up-
per bound since it gives a feasible clock-period even in zero
clock-skew framework if there is no negative cycle consist-
ing of hold-edges. In case αu,v is not 0 for some pairs, the
above approach might miss the feasible clock-period range.
If the maximum feasible clock-period is less than the maxi-
mum signal propagation delay, then we fail to find the feasi-
ble clock-period range. However, we do not take these cases
into consideration at this point since they seldom happen.

The algorithm to determine the minimum feasible
clock-period is shown in Fig. 2. The above mentioned lower
and upper bounds of the minimum feasible clock-period are
determined in O(m). The time complexity of the algorithm
is O(γ(km + k2n)) where γ is the number of repetitions of
the decision algorithm. In experiments, k and γ are less than
100 and 20, respectively.

Procedure MinClock( G(V, E) )
Input: constraint graph G(V, Ehold ∪ Esetup).
Output: minimum feasible clock-period T .

1. Lself := max(u,u)∈Ehold dmax(u, u).
2. Ldiff := max(u,v)∈Ehold (dmax(u, v) − dmin(u, v)).
3. L := max{Lself , Ldiff }.
4. T := max(u,v)∈Ehold dmax(u, v).
5. if IsNoNegCycle( G, L ) = “Yes” return L.
6. if IsNoNegCycle( G, T ) = “No” return∞.
7. while T − L > ε do
8. M := (T + L)/2.
9. if IsNoNegCycle( G, M ) = “Yes” then T := M,

10. else L := M endif
11. endwhile
12. return T .

Fig. 2 Minimum feasible clock-period algorithm.
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4. Minimum Cost Scheduling

The minimum cost scheduling algorithm is shown in Figs. 3,
4, and 5. The cost of a clock-schedule s is defined as the sum
of differences between the clock-timing s(v) and the target
clock-timing o(v) of register v. The algorithm finds a clock-
schedule with the minimum cost efficiently.

The computation time depends on an initial clock-
schedule, though the final cost is same. We found a better

Procedure MinCost( GT (V, ET ), l, u, o )
Input: constraint graph GT , lower bound l(v), upper bound u(v), and

target timing o(v) for v ∈ V.
Output: clock-timing s(v) for v ∈ V.

1. Get an initial clock-schedule s.
2. do
3. do s := TryDec( GT , l, o, s ) while s is modified.
4. do s := TryInc( GT , u, o, s ) while s is modified.
5. while s is modified.
6. return s.

Fig. 3 Minimum cost scheduling algorithm.

Procedure TryDec( GT (V, ET ), l, o, s )
Input: constraint graph GT , lower bound l(v), target timing o(v), and

current clock-timing s(v) for v ∈ V.
Output: modified clock-timing s(v) for v ∈ V.

1. V1 := {v ∈ V | s(v) > o(v)}.
2. V2 := {v ∈ V | s(v) ≤ o(v)}.
3. F2 := {v ∈ V | s(v) = l(v)}.
4. Ec := { critical edges in GT for s}.
5. if V1 � ∅ then
6. X := FindCRD(G(V1,V2, Ec), F2).
7. for all Xi ∈ X
8. δ1 := medianv∈Xi (s(v) − o(v)).
9. δ2 := min(u,v)∈ET ,u∈Xi ,v�Xi ∆s,T (u, v).

10. δ := min(δ1, δ2).
11. for all v ∈ Xi let s(v) := s(v) − δ.
12. endfor
13. endif
14. return s.

Fig. 4 Reduce cost by cost reducible vertex sets.

Procedure FindCRD( G(V1,V2, E), F2 )
Input: critical graph G, vertex set F2 ⊆ V2.
Output: set X of CRDs Xi ⊆ V1 ∪ V2 such that |Xi ∩ V1 | > |Xi ∩ V2 |,

Xi∩F2 = ∅, and there is no outgoing edge from Xi to (V1∪V2)\Xi

in G.

1. F := {u ∈ V1 ∪ V2 | directed path from u to v ∈ F2 in G}.
2. Et := {(u, v) | directed path from u ∈ V1 to v ∈ V2 in G}.
3. Vb

1 := V1 \ F, Vb
2 := V2 \ F.

4. Eb := {(u, v) ∈ Et | u ∈ Vb
1 , v ∈ Vb

2 }.
5. Find maximum matching in bipartite graph Gb(Vb

1 ,V
b
2 , E

b).
6. Let Vc be the set of vertices unreachable from any unmatched ver-

tex in Vb
1 in Gb using unmatched edges from a vertex in Vb

1 and
matched edges from a vertex in Vb

2 .
7. Let X be the set of vertex sets of connected components of the graph

obtained from G by deleting vertices in Vc ∪ F.
8. return X.

Fig. 5 Find cost reducible vertex sets by decrease.

initial solution in step 1 of Procedure MinCost in Fig. 3 by
using a variance of Bellman-Ford shortest path algorithm,
but a detailed discussion is omitted here. The initial solution
is modified repeatedly by procedures TryDec and TryInc
until an optimum solution is obtained. In Procedure Try-
Dec, the clock-timing of each register in the vertex set Xi

obtained by Procedure FindCRD is decreased by δ. Proce-
dure TryDec and Procedure FindCRD are shown in Figs. 4
and 5, respectively. Procedure TryInc is defined similarly
but omitted. Although the strategy of this algorithm is same
as that in [16], the constraints on upper bound u(v) and lower
bound l(v) of clock-timing of register v are taken into ac-
count.

For a given clock-schedule, a vertex set Xi is said to be
cost reducible by decrease (CRD) if the cost of the clock-
schedule is reduced without violating constraints by de-
creasing the clock-timing of each register in Xi by the same
amount. That is, |{v ∈ Xi | s(v) > o(v)}| > |{v ∈ Xi | s(v) ≤
o(v)}|, Xi contains no vertex v such that s(v) = l(v), and Xi

has no outgoing critical edge to V \ Xi. For each CRD, the
amount of change is determined in order to reduce the cost
maximally without violating the constraints.

Lemma 1: Procedure FindCRD finds cost reducible ver-
tex sets by decrease, if exist.

Proof: First, we show that a vertex set found by Procedure
FindCRD is CRD. Let Xi be the vertex set of a connected
component of the graph obtained in step 7 by Procedure
FindCRD. Xi contains no vertex v such that s(v) = l(v) since
Xi contains no vertex in F2. Assume that there is a critical
edge from u ∈ Xi to v � Xi. Since v is not in the other con-
nected components (otherwise two connected components
are connected), v ∈ Vc ∪ F. If v is in F then u ∈ F. This
contradicts the assumption. Thus v is in Vc and matched. If
v is in Vb

2 , there is an edge from a vertex in Vb
1 ∩ Xi to v in

Gb and v is in Xi. Thus v is in Vb
1 . Let v′ be the partner of

v in matching. There is an edge from a vertex in Vb
1 ∩ Xi

to v′ in Gb and v′ is in Xi. Accordingly, v is contained in
Xi. Thus, there is no outgoing critical edge from Xi. In Xi,
the numbers of matched vertices in Vb

1 and Vb
2 are same. Xi

contains at least one unmatched vertex in Vb
1 , but not in Vb

2 .
Thus |Xi ∩ Vb

1 | > |Xi ∩ Vb
2 |. Therefore, Xi is a CRD set.

Second, we show that a CRD set is found if it exists.
Procedure FindCRD finds a CRD set if and only if there
is an unmatched vertex in Vb

1 . Assume that there is no un-
matched vertex in Vb

1 . If there is a CRD set Xi, Xi contains at
least one vertex a in Vb

1 such that the partner b in matching is
not in Xi. However, there is a path from a to b that consists
of critical edges. This contradicts a condition that Xi has no
outgoing critical edge. �

Notice that cost reducible vertex sets by increase can be
found by similar procedure.

Theorem 1: Procedure MinCost obtains a minimum cost
schedule s, i.e.

∑
v∈V |s(v) − o(v)| is minimum.

Proof: Without loss of generality, we assume that o(v) = 0
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for v ∈ V since the equivalent problem is obtained by replac-
ing weight w(u, v) with w(u, v) − o(v) + o(u).

Let s be the clock-schedule obtained by Procedure
MinCost. Assume contrary that there is a clock-schedule
s′ such that

∑
v∈V |s′(v)| < ∑v∈V |s(v)|.

Let δ(v) = s(v)−s′(v). Let V+, V0, and V− be the subsets
of V such that δ is positive, 0, and negative, respectively. Let
V1,V2, . . . ,V p such that δ(v) = δi for v ∈ Vi and δ(u) > δ(v)
for u ∈ Vi and v ∈ V j (i < j). Let Vi∗ =

⋃i
j=1 V j. Assume

that (u, v) is critical in s, that is, s(v) − s(u) = w(u, v). Since
s′ is feasible, s′(v)− s′(u) ≤ w(u, v). Thus, δ(u) ≤ δ(v). Thus
there is no critical outgoing edge from Vi∗. Since s(v) �
l(v) if v ∈ V+, Vi∗ is a candidate of a CRD set for s. Let
fi(x) =

∑
v∈Vi∗ |s(v) − x|. Since there is no CRD set for s by

Lemma 1, fi(x) ≥ fi(x′) for any x > x′ ≥ 0. Notice that fi(x)
is a convex function. Then

∑
v∈V+ |s′(v)| = f1(δ1) − f1(δ2) +

f2(δ2) − · · · − fp−1(δp) + fp(δp) ≥ fp(0) =
∑
v∈V+ |s(v)|.

Similarly, we have
∑
v∈V− |s′(v)| ≥

∑
v∈V− |s(v)|. There-

fore,
∑
v∈V |s′(v)| ≥ ∑v∈V |s(v)|, and this contradicts the as-

sumption. �

Although the time complexity of Procedure MinCost is
O(n2m) where n and m are the number of registers and the
number of register pairs with signal path, respectively, the
experiments show that it is practically fast.

5. Clock-Scheduling System

The procedures described in previous sections and others are
combined into one system as shown in Fig. 6. Here, other
procedures in the system are briefly described.

By defining margins(v) and marginh(v), the minimum
range of clock-timing for each register is secured. However,
since the effect of clock-scheduling is not considered in the
current circuit synthesis, the clock-timing of most registers
in the circuit can have very large range without violating the
circuit functionality. The larger the range of clock-timing
is, the easier the realization is. This means that the possibil-
ity of reduction of other metrics such as clock wire length,
power consumption in clock-tree increase. Therefore, we
secure the range of clock-timing as large as possible by a
greedy heuristic MaxRange (details are omitted).

This system is used as a subroutine of synthesis tools.
Therefore, it provides information of a circuit to improve

Procedure Clock-Schedule( C, T , l, u, r, o )
Input: circuit graph C(Vc, Ec), target clock-period T , and lower bound

l(v), upper bound u(v), minimum range r(v) and target timing o(v)
for v ∈ V.

Output: clock-period T , clock-timing (smin(v), smax(v)) for v ∈ V.

1. Construct constraint graph G(V, E) from C, l, u, r.
2. if constraints are infeasible

Output Statistics and return “Infeasible.”
3. if target clock-period T is not given let T :=MinClock( G ).
4. s :=MinCost( GT , o ).
5. s :=MaxRange( GT , s ).
6. Output Schedule and Statistics.

Fig. 6 Clock-scheduling engine.

the circuit performance. A critical part of the circuit in term
of the minimum clock-period obtained by clock-scheduling
form a cycle in the constraint graph. More precisely, the
union of these cycles are the critical part of the circuit. The
strongly connected component of the graph obtained from
the constraint graph by deleting non-critical edges in the
clock-schedule that achieves the minimum clock-period is
obtained. Among the strongly connected components ob-
tained, the components consist of more than one vertex, and
the components consist of one vertex with critical self-loop
are detected as the critical parts of the circuit.

6. Experiments

The algorithms proposed are written in C++ and imple-
mented on Sun Ultra 10 (384M memory, 778M swap). For
comparisons, LP solver lp solve 3.2 [19] and CPLEX [20]
are executed on the same machine.

The data used in experiments shown in Table 1 are sub-
blocks of image processing LSIs which are designed in an
industry in 0.25 [µm] (block1, 2, and 3) and in 0.18 [µm]
(block4 and 5) technologies. Among circuits, block1, 2, and
3 contain multi-clock-cycle signal paths. Feasible clock-
period of block2 and 3 have upper bounds, since they con-
tain a register pair with non-zero αu,v. In experiments, unless
otherwise specified, the timing of each I/O pin is scheduled
as well as registers, the target clock-timing and its minimum
range are both set to 0, for simplicity. Of course, the resul-
tant minimum feasible clock-period and clock-schedule may
differ if the constraints differ, which will be demonstrated in

Table 1 Statistics of circuits (0.25 & 0.18 [µm]).

circuit #reg #path max-d [ps] min-cp [ps] (%)

block1 1654 11697 11569 8323 (71.9)
block2 6439 113101 11911 11654 (97.8)
block3 7973 104136 11808 9553 (80.9)
block4 7052 126559 8354 6256 (74.9)
block5 12460 947082 12621 9665 (76.6)

#reg : number of registers (including I/O pins).
#path : number of register pairs with signal paths.
max-d : maximum of maximum delay over clock-cycle.
min-cp : minimum feasible clock-period.

Table 2 Negative cycle detection algorithms.

circuit t-cp Ans. BF BF-ncd (Prop.)
[ps] time [s] time [s] (%) k

block1 4000 No 26.66 0.0023 (0.000) 3
8322 No 0.8762 0.0148 (0.017) 6
8323 Yes 0.1255 0.1259 (1.003) 6

11569 Yes 0.1248 0.1250 (1.002) 1
block5 8763 No 11669.6 0.253 (0.000) 3

9664 No 1096.11 0.246 (0.000) 4
9665 Yes 7.256 7.313 (1.007) 9

10692 Yes 7.130 7.151 (1.002) 5
BF : Bellman-Ford shortest path algorithm.

BF-ncd : Bellman-Ford with negative cycle detection.
t-cp : target clock-period.
time : computation time.

k : number of repetitions of update procedure.
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Table 3 Minimum clock-period algorithms.

Proposed Algorithm LP1(lp solve 3.2) LP2(CPLEX)
circuit min-cp [ps] Lself [ps] Ldiff [ps] time[s] (read[s]) γ time/γ [s] time[s] (read[s]) time[s] (read[s])

block1 8323 6036 8323 0.14 (0.89) 1 0.14 60.22 (4.38) 6.23 (0.38)
block2 11654 11654 10647 1.80 (9.59) 1 1.80 18.11 (1609.90) 27.90 (4.31)
block3 9553 – 9553 3.13 (10.00) 1 3.13 OT (1324.58) 1651.90 (3.95)
block4 6256 4358 6256 2.17 (10.84) 1 2.17 830.36 (1888.90) 52.93 (4.72)
block5 9665 8763 8758 38.73 (70.35) 14 2.77 – (OT) OM (43.05)

LP1 : lp solve 3.2.
LP2 : CPLEX 7.0.0.
min-cp : minimum feasible clock-period.
γ : number of repetitions of BF-ncd.

Lself : maximum delay from a register to the same
register.

Ldiff : maximum difference between max and min
delays in signal paths.

time : time for computation.
read : time for reading data.
OT : time > 5000[s].

OM : out of memory.

Table 4 Minimum cost schedule algorithms.

Proposed Algorithm LP1(lp solve 3.2) LP2(CPLEX)
circuit t-cp [ps] cost [ns] time[s] #rep time/#rep [s] time[s] (read[s]) time[s] (read[s])

block1 8323 111.1 0.70 33 0.02 11.87 (15.83) 3.15 (0.44)
block2 11654 6.9 0.72 6 0.12 34.63 (998.80) 32.68 (4.32)
block3 9553 656.1 15.72 77 0.20 1166.90 (1169.71) 59.19 (4.07)
block4 6256 82.0 5.89 35 0.17 327.13 (1198.57) 50.18 (4.86)
block5 9665 175.7 61.42 75 0.82 – (OT) OM (39.17)

LP1 : lp solve 3.2.
LP2 : CPLEX7.0.0.
t-cp : target clock-period.

cost : sum of differences of obtained and target clock-timings.
#rep : the number of repetitions of FindCRDs.
time : time for computation.

read : time for reading data.
OT : time > 5000[s].

OM : out of memory.

Table 6.
In Table 2, the computation times to decide whether the

target clock-period is feasible or not by using Bellman-Ford
shortest path algorithm with and without negative cycle de-
tection are shown. The computation times of two algorithms
are almost same if there is no negative cycle. This shows that
the overhead of negative cycle detection is small enough.
When the circuit size is large and the negative cycle exists,
the expansion of the computation time of algorithm without
negative cycle detection is recognized. This reflects the fact
that the time complexity without negative cycle detection is
O(nm). While, the computation time of the algorithm with
negative cycle detection remains small when the circuit size
is large. It is confirmed that the number of repetitions of
the update procedure, k, is almost independent of the circuit
size.

In Table 3, the comparisons on computation times be-
tween our proposed minimum clock-period computation al-
gorithm and LPs are shown. LP1 is lp solve 3.2 and LP2 is
an industrial tool CPLEX. In our proposed algorithm, the
BF-ncd is executed one time except for block5 since the
minimum clock-period of each circuit is equal to its lower
bound explained. The computation time of our proposed al-
gorithm is small even if LP can not handled the system of
inequalities.

In Table 4, the comparisons on computation time be-
tween our proposed minimum cost schedule algorithm and
LPs are shown. Our proposed algorithm obtains optimal so-
lutions constantly faster than others. Also, the efficiency in
terms of space complexity against LPs is proved empirically.

In Table 5, computation times of overall system are
shown. It is confirmed that the computation time is almost
linear to the circuit size. In Table 6, clock-schedule results
under various constrains are shown. In this experiment, the

Table 5 Computation time of algorithms.

name read[s] cp[s] cost[s] range[s] write[s] total[s]

block1 0.89 0.14 0.70 0.10 0.19 2.02
block2 9.59 1.80 0.72 0.84 1.55 14.50
block3 10.00 3.13 15.72 1.14 1.88 31.87
block4 10.84 2.17 5.89 1.41 1.82 22.13
block5 71.30 38.73 61.42 4.79 12.52 198.76

read : time for reading data.
cp : time for minimum feasible clock-period.

cost : time for minimum cost schedule.
range : time for setting range of clock-timing.
write : time for outputting result.
total : time for total computation.

Table 6 Schedule results (by proposed algorithm).

Constraints Result
name t-cp min-r pin range min max cost time

[ps] [ps] [ps] [ps] [ns] [s]

block5 opt 0 No No 9665 ∞ 175.7 193.97
opt 0 Yes Yes 9665 ∞ 177.2 293.79
opt 100 No Yes 9815 ∞ 188.0 221.59
opt 100 Yes No 9815 ∞ 189.4 311.85

t-cp : target clock-period. (opt : optimum is set)
min-r : minimum range of clock-timing.

pin : Is clock-timing of I/O fixed to 0?
range : Is range of clock-timing maximized?

min (max) : minimum (maximum) feasible clock-period.
cost : sum of differences of obtained and target clock-

timings.
time : total computation time.

following parameters are given to the system as constraints
or used to control the system: the target clock period, the
minimum range of clock-timing, the clock-timing of I/O is
fixed or not, and the sum of ranges of clock-timings is max-
imized or not.
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7. Conclusions

This paper introduces a practical fast clock-scheduling en-
gine. The results to the circuit with about 10000 registers
and 100000 data paths are obtained within a few minutes. It
handles various design constraints such as clock-timing of
I/O pin and multi-clock-cycle signal path.

For the future work, the tolerance for the clock-jitter
under the existence of multi-clock-cycle signal path is ur-
gent. The range of feasible clock-period should be taken
into account in clock-schedule design. The improvement
in budgeting to the range of clock-timing is also important
which will improve the various circuit metric such as area,
power, and clock-circuitry.
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