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PAPER

Analytic Constructions of Periodic and Non-periodic
Complementary Sequences

Todor COOKLEV†a), Nonmember and Akinori NISHIHARA††, Fellow

SUMMARY An analytic approach for the generation of non-periodic
and periodic complementary sequences is advanced for lengths that are
powers of two. The periodic complementary sequences can be obtained
using symmetric or anti-symmetric extensions. The properties of their au-
tocorrelation functions are studied. The non-periodic complementary se-
quences are the intersection between anti-symmetric and symmetric pe-
riodic sequences. These non-periodic and periodic complementary se-
quences are identified to be special cases of non-periodic and periodic (or
cyclic) orthogonal wavelet transforms. This relationship leads to the novel
approach.
key words: correlation, discrete Fourier transforms, orthogonal functions,
sequences, transforms, wavelet transforms

1. Introduction

There is a wealth of literature on the theory and design of
pseudo-random (or pseudo-noise) sequences for communi-
cations with different properties of their autocorrelation and
cross-correlation functions (ACF and CCF) [1]–[5], [12]–
[27].

Perfect-reconstruction (PR) filter banks have been in-
tensely studied over the last twenty years. Orthogonal fil-
ter banks provide orthogonal bases for the Hilbert space of
square-summable sequences [6]. Furthermore provided that
the filters satisfy constraints additional to PR, regular (or
smooth) continuous-time functions (scaling functions and
wavelets) can be obtained, which are orthogonal bases for
the space of square-integrable functions [6].

The main purpose of this paper is firstly to demonstrate
the relationship between wavelet transform theory and the
theory of complementary sequences, and secondly to de-
velop novel formulae for the analytic construction of com-
plementary sequences using wavelet (or filter bank) theory.
We shall consider one important class of sequences, namely
complementary sequences. These sequences were recently
found to be efficient in a new modulation for wireless com-
munications, called spread-signature CDMA [11]. The con-
nection between two-channel orthogonal FIR filter banks
and aperiodic complementary sequences was observed by
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several researchers [8], [10] and is not novel. Periodic com-
plementary sequences were advanced in [27]. It is shown
here that they can be approached using the cyclic wavelet
transform. This allows us to develop systematic algorithms
for their generation. These two new sets of orthogonal se-
quences are generalizations of the Golay sequences in the
sense that the Golay sequences are members of both of these
sets. The novel approach allows to derive explicit formulas
for the systematic generation of Golay sequences, when the
length is a power of two. Previously these sequences could
only be generated using computer searches.

The paper is organized as follows. In Sect. 2 we re-
view filter bank theory and complementary sequences. Sec-
tion 3 is devoted to orthogonal periodic symmetric codes,
and Sect. 4—to anti-symmetric codes. Section 5 is devoted
to explicit formulas for Golay complementary pairs.

2. Two-Channel Orthogonal FIR Filter Banks and
Aperiodic Complementary Sequences

Two-channel orthogonal FIR filter banks are the most fun-
damental and widely used class of filter banks [6], [7]. They
consist of two parts (Fig. 1): an analysis part of two filters
H0(z) and H1(z), each followed by downsampling, and a
synthesis part, consisting of upsampling in each channel fol-
lowed by two filters G0(z) and G1(z). It is easily shown that
the output signal, X̂(z) is given by

X̂(z) =
1
2

[H0(z)G0(z) + H1(z)G1(z)] X(z)

+
1
2

[H0(−z)G0(z) + H1(−z)G1(z)] X(−z) (1)

In perfect-reconstruction (PR) filter banks we have X̂(z) =
X(z) and therefore

H0(z)G0(z) + H1(z)G1(z) = 2 (2)

H0(−z)G0(z) + H1(−z)G1(z) = 0 (3)

The aperiodic auto-correlation function (ACF) of the im-
pulse responses h0[n] and h1[n] are half-band functions:

Fig. 1 A two-channel filter bank.
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〈h0[n], h0[n + 2k]〉 = δk (4)

〈h1[n], h1[n + 2k]〉 = δk, (5)

while the cross-correlation is identically zero

〈h0[n], h1[n + 2k]〉 = 0 (6)

The synthesis filters are completely determined from the
analysis filters:

G0(z) = H1(−z) = z−N H̃0(z) (7)

G1(z) = −H0(−z) = z−N H̃1(z) (8)

where the .̃ operation means transposition, conjugation of
the coefficients and replacing z by z−1. In the time-domain
h1[n] is related to h0[n] according to

h1[n] = −h0[N − n](−1)−n+1 (9)

where N is the order of the filters and is necessarily odd.
Any two sequences h0[n] and h1[n] with the auto-correlation
and cross-correlation properties in (4), (5) and (6) define
an orthogonal wavelet transform and the two sequences
are an orthogonal basis for the Hilbert space of square-
summable sequences. Provided that H0(z) is regular, the
impulse response of the iteration

∏i−1
l=0 H0(z2l

) converges to a
continuous-time function called scaling function and the im-
pulse response of the iteration

[∏i−2
l=0 H0(z2l

)
]

H1(z2i−1
) con-

verges to a continuous-time function called a wavelet.
The theory of Golay-Rudin-Shapiro (or complemen-

tary) sequences dates back to 1949 [2]. By definition a com-
plementary series consists of two finite sequences of 1’s and
−1’s such that the sum of autocorrelation functions of the
two sequences is constant. These complementary sequences
have been rediscovered several times. They have challeng-
ing properties from a theoretical perspective, and since the
coefficients are binary, have obvious computational advan-
tages in practical implementations. Thus, two sequences of
length l,

A = (a0, a1, . . . al), (10)

B = (b0, b1, . . . bl), (11)

where each entry equals 1 or −1, form a pair of Golay com-
plementary sequences if they satisfy the l − 1 conditions

l− j−1∑

i=0

(aiai+ j + bibi+ j) = 0 (12)

for j = 1, · · · l − 1. Using polynomial notation the two se-
quences A and B are complementary if and only if

A(z)A(z−1) + B(z)B(z−1) = 2l (13)

If A and B are complementary then the following op-
erations produce complementary sequences of the same
length: (1) Negating A and/or B; (2) Reversing A and/or
B; (3) Negating the polyphase components of A and B.
There are formulas to produce longer complementary pairs,
starting from shorter ones [1], for example, if A and B

are complementary of length l, C(z) = A(z) + z−lB(z) and
D(z) = A(z) − z−lB(z) are also complementary of length
2l. This construction is iterative, which is different from
the explicit approach advanced here. Using the formulas
introduced in this paper for a given length all complemen-
tary pairs can be generated when the length is a power of
two, which implicitly takes into account all properties of the
complementary pairs mentioned above.

Complementary sequences have found various appli-
cations in CDMA wireless communication systems [11]
and data communications systems [19]. Note that there
is a close relationship between PR filter banks and Golay-
Rudin-Shapiro systems, which has not been recognized be-
fore:

Theorem 1 (Cooklev ’95) The Golay-Rudin-Shapiro
(GRS) polynomial pairs are polyphase components of a
lowpass filter in an orthogonal maximally-decimated two-
channel FIR filter bank.

Proof: Suppose we are given a filter H(z) of length 2l−1
with coefficients which are only +1 and −1 satisfying
H(z)H(z−1) + H(−z)H(−z−1) = const = 4. It can be proven
that the polyphase components of H(z) satisfy (13), i.e. they
form a GRS polynomial pair:

4l =
[
H0(z2) + z−1H1(z2)

] [
H0(z−2) + zH1(z−2)

]

+
[
H0(z2) − z−1H1(z2)

] [
H0(z−2) − zH1(z−2)

]

= 2
[
H0(z2)H0(z−2) + H1(z2)H1(z−2)

]
(14)

Therefore the polyphase components of every power-
complementary filter H(z) are a GRS pair. Now it is straight-
forward to establish that the filter with polyphase compo-
nents equal to a GRS pair is power-complementary. Q.E.D.

Years before the advent of wavelet transforms it was
recognized that these GRS pairs are the polyphase compo-
nents of E-sequences, which provide orthonormal bases for
the Hilbert space [5]. The E-sequences having zero values of
the autocorrelation function in even shifts have correlation
properties close to optimal. It has apparently escaped evi-
dence the fact that these E-sequences have the same proper-
ties as the product P(z) in filter bank theory. Note that while
there are PR FIR filter banks of every even length, the re-
quirement the length of the Golay sequences to be even is
not sufficient. J. Byrnes in [10] realized that GRS sequences
are related to filter banks, but he did not state exactly that
they are the polyphase components. The above theorem
was proven for the first time in [8]. It seems that the first
lowpass filter with more than 2 coefficients for FIR perfect-
reconstruction filter banks have been designed by Golay as
early as 1949. Note that the restriction the coefficients to
be binary (1 and −1) constrains the zeros of the filter H(z)
and as a result the filter bank is non-regular, i.e. the impulse
response of the iteration

∏i−1
l=0 H(z2l

) does not converge to a
continuous-time function.

Following Golay’s work, mathematical properties,
computer searches and existence problems for certain
lengths were further investigated by various researchers.
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Different applications have required different generaliza-
tions of the original concept of Golay to be made [1]. For
their research into surface acoustic wave (SAW) devices
Tseng and Liu studied complementary sets of sequences
[18]. Welti advanced sequences of vectors which could
be successfully used in pulsed radar for range detection
[15]. Complex-valued complementary sequences were con-
sidered by Frank; they have become known as Frank codes
and have applications in the area of radar pulse compression.
Subcomplementary and supercomplementary sequences are
two relatively new extensions of GRS sequences. The fact
that using a GRS pair we can build an orthogonal filter H(z)
which forms a basis for square-summable sequences was
observed in [5]. It is, however, clear that the set of all pos-
sible extensions of GRS sequences is isomorphic to the set
of all possible filter banks. Just as all filter banks have use-
ful properties, by using the filter bank framework new se-
quences can be obtained that have useful properties.

3. Orthogonal Periodic Symmetric Codes

It must be noted at this point, that the theory of filter banks
is usually developed assuming linear (or aperiodic) convo-
lutions. However, when filter banks are used in data com-
pression to avoid the increase in the number of samples
(which would have compromized the compression perfor-
mance) periodic (or cyclic) convolution is used. The corre-
sponding wavelet transforms are called periodic (or cyclic).
In this paper we use specifically cyclic wavelet transforms to
design cyclic extensions of complementary sequences. Here
we consider the problem of the design of orthogonal sys-
tem {s0, s1, · · · sM−1}. It is convenient and simple to assume
that all orthogonal signals si are generated by cyclic shifts
of s0 = (a0 a1 · · · aN−1) and that the sequence si is periodic
with period N : aN+i = ai. To simplify the signal process-
ing operations it is desirable to deal with binary symbols, i.e.
±1. It is clear that the maximum size of this cyclic code, that
is the maximum number of different codewords, is equal to
N. If the code is of maximum size, then the sequences si

will be generated by single cyclic shifts and M = N. This
problem is similar with filter bank theory. The codewords
play the role of impulse responses of digital filters in a filter
bank. If orthogonality is imposed orthogonal cyclic codes
of maximum size do not exist. Following the wavelet trans-
form approach, however, orthogonal periodic codes can be
constructed with size equal to N/2. The properties of se-
quences depend on their autocorrelation functions (ACFs).
Since we assumed periodic sequences it is convenient to use
the periodic autocorrelation function (PACF)

r[n] =
N−1∑

i=0

a[i]a[〈i + n〉N] a[i] ∈ 1,−1 (15)

where a[N + i] = a[i] and 〈.〉 is the modulo notation.

Theorem 2 The system of codewords formed by double
cyclic shifts of the sequence s0 = (a0, a1, · · · , aN−1) with
length N is orthogonal iff

r[2n] = 0, n = 1, 2, · · ·N/4, (16)

and its size is N/2.

Proof: Clearly s2n = (a2n, a2n+1, · · · , a2n+N−1) is formed by
double cyclic shifts of the sequence s0. If we assume that
s2n is orthogonal to s0, then

a0 ·a2n+a1 ·a2n+1+a2 ·a2n+2+· · ·+aN−1 ·a2n+N−1=0. (17)

It is seen that the left side of (17) is equal to the periodic
autocorrelation function in (15), i.e. r[2n] = 0. Now, if it
is assumed that r[2n] = 0, then orthogonality follows from
(17). Q.E.D.

Using the discrete Fourier transform (DFT) it can be
written that

R[k] =
N−1∑

n=0

r[n]Wnk
N

=

N−1∑

n=0

N−1∑

i=0

a[i]a[〈i + n〉N]Wnk
N 〈i + n〉N = l

=

N−1∑

i=0

a[i]
N−1∑

l=0

a[l]W (l−i)k
N

= A[k]A[−k]= |A[k]|2 (18)

In our notation

WN = e− j2π/N . (19)

A fundamental property of the DFT is that it assumes peri-
odicity in both time- and frequency-domains. Note that the
DFT of the PACF is non-negative, which corresponds to the
condition that the frequency response of the product filter
in filter banks be non-negative. A polyphase decomposition
can be applied on the PACF

R(z) = R0(z2) + z−1R1(z2), (20)

which in the DFT domain corresponds to

R[k] = R0[2k] +W−k
N R1[2k] (21)

where

R0[2k] =
N/2−1∑

i=0

r[2i]Wi2k
N (22)

R1[2k] =
N/2−1∑

i=0

r[2i + 1]Wi2k
N (23)

Note that R0[2k] and R1[2k], as well as the similarly de-
fined A0[2k] and A1[2k], are not DFTs themselves. Since
all even-indexed coefficients r[2i] are equal to zero, with the
exception of r[0] we get

R0[2k] = r[0] = N (24)

Taking (21) into consideration we get

R[k] =
(
A0[2k] +Wk

N A1[2k]
) (

A0[−2k] +Wk
N A1[−2k]

)
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= A0[2k]A0[−2k] + A1[2k]A1[−2k]

+Wk
N A1[2k]A0[−2k] +W−k

N A0[2k]A1[−2k]

(25)

Note that Wk
N A1[2k]A0[−2k] and W−k

N A0[2k]A0[−2k] are
complex conjugates of each other. The conclusion is that

R0 [2k] = |A0[2k]|2 + |A1[2k]|2 (26)

Wk
NR1[2k] = 2Re

{
Wk

N A1[2k]A0[−2k]
}

(27)

The necessary and sufficient condition for orthogonality of
the codewords is

|A0[2k]|2 + |A1[2k]|2 = N (28)

The problem is how to find all orthogonal filters with
binary coefficients? The conditions of orthogonality are in-
variant under the following operations:

• Sign inversion, i.e. if A(z) is a codeword, then −A(z) is
also a codeword.

• Inversion of the order ai ← aN−1−i, i.e. if A(z) is a code-
word, then z−N Ã(z) is also a codeword.

• Cyclic shifts

3.1 The Structure of Codewords

The polynomial representation of the codeword s0 is given
by A(z), which can be decomposed as

A(z) = A0(z2) + z−1A1(z2) (29)

In the same way, as it was done before it can be estab-
lished that these polyphase components are complementary
sequences, which are periodic, however. (The non-periodic
complementary sequences are the GRS sequences) An inter-
esting question is whether these complementary sequences
are themselves codewords.

The PCF of (ai, ai+2, · · · ai+N−2), i = 0, 1 are

ri[n] =
N/2−1∑

k=0

a[2k + i]a[2(k + n) + i] (30)

where the indices must be evaluated (mod N). Therefore

Ri[k]=
N/2−1∑

n=0

ri[n]Wnk
N/2=Ai[k]Ai[−k]= |Ai[k]|2 i = 0, 1 (31)

From (30) it follows that

r0[n] + r1[n] =
∑

k

a[2k]a[2k + 2n]

+
∑

k

a[2k + 1]a[2k + 2n + 1]

= r[2n] n = 1, · · ·N/4 (32)

Since we know that r[2n] = 0, n � 0, the necessary and
sufficient conditions for orthogonality are

1. Each of these complementary sequences are themselves

codewords, i.e. ri[2n] = 0 and

r0[2n − 1] = −r1[2n − 1] n = 1, 2, · · ·N/8 (33)

2. The complementary sequences are not codewords, i.e. the
condition ri[2n] = 0 fails for at least one n; then

r0[n] = −r1[n], n = 1, 2, · · ·N/8 (34)

Let GN be the set of all codewords with length N. This set is
a union of two sets: the set G1

N of codewords the polyphase
components of which are themselves codewords of length
N/2 and the set G2

N of codewords the polyphase components
of which are not codewords.

Theorem 3 A periodic cyclic code with length N = 2k

exists for all values of k greater than 2.

Proof: First, it will be shown that a periodic cyclic code
exists for k= 2. It is recognized that filter banks whose
polyphase components are GRS polynomials with length
N/2 belong to the set GN . Therefore (1, 1, 1,−1) is a code-
word. By cyclic shifts and sign inversions we can get 7 other
codewords, or the total size of the set G4 is 8. Now, suppose
that A0(Wk

N/2) ∈ GN/2 which has the polyphase decomposi-
tion

A0(W2k
N ) = A00(W4k

N ) +W2k
N A01(W4k

N ) (35)

Since A0(Wk
N/2) ∈ GN/2 the condition of orthogonality

∣∣∣A00(W4k
N )
∣∣∣2 +
∣∣∣A01(W4k

N )
∣∣∣2 = N/2 (36)

holds. Let us define

A1(W2k
N ) = ±Wkl

N

[
A00(W4k

N ) −W2k
N A01(W4k

N )
]

(37)

The polyphase components of A1 also satisfy (35) and thus
A1 is also a codeword, A1 ∈ GN/2. The sequence Ã1 is also a
codeword. Finally A0 and A1 can be shown to be polyphase
components of a codeword with length N by taking into ac-
count (28) and (35)
∣∣∣A0(W2k

N )
∣∣∣2 +
∣∣∣A1(W2k

N )
∣∣∣2 = N (38)

Therefore A(z) = A0(z2)+z−1A1(z2) is a codeword belonging
to the set GN . Q.E.D.

From this construction it is obvious that the polyphase
components of A1 are not independent of those of A0.
For even values of l and apart from a shift, the first
polyphase components of A0 and A1 coincide, and the sec-
ond polyphase components are opposites. From (37) we un-
derstand that apart from shifting the sequence as a conse-
quence of the term Wl

N A1 is constructed by interleaving the
two N/4-length sequences and changing the sign of the sec-
ond one. This operation is the same as the one in property
10 of Ref. [3] for aperiodic sequences.

3.2 Construction of Codewords

It is convenient to introduce four DFTs:
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B(Wk
4) = 1 −Wk

4 −W2k
4 −W3k

4 (39)

C(Wk
4) = 1 +Wk

4 −W2k
4 −W3k

4 (40)

D(Wk
4) = 1 +Wk

4 +W2k
4 +W3k

4 (41)

E(Wk
4) = 1 −Wk

4 +W2k
4 −W3k

4 (42)

Using these four DFTs we shall try to construct codewords
satisfying the orthogonality condition (28).

3.2.1 Codewords with Length N=4

For N=4, we can see
∣∣∣B(Wk

4)
∣∣∣2 = 4, so codewords for N=4

can be constructed by cyclic shifts and sign inversions of B:

A[k] = A(Wk
4) = ±Wkl

4 B(Wk
4) l ∈ {0, 1, 2, 3} . (43)

The capacity of this code is Q4 = 8.

3.2.2 Codewords with Length N=8

For N= 8 the codewords can be constructed starting from
codewords of length 4:

A[k] = A(Wk
8) = ±Wkl

8 B
(
W2k

8

) (
1 ±Wk(2 m+1)

8

)

m ∈ {0, 1, 2, 3} l ∈ {0, 1, 2, 3, 4, 5, 6, 7} (44)

In this case the total number of such sequences is 4 ·4 ·2 ·2 =
26. For example when l= 0 and m= 0 we get the codeword
(1, 1,−1,−1,−1,−1,−1,−1). Table 1 lists all 64 sequences.

3.2.3 Codewords with Length N=16

For N= 16 we know that all codewords from G8 are first
polyphase components of codewords from G16. The second
polyphase components can be found from (36) and (37)

A16,1(Wk
16) = ±Wkl

16B(W4k
16)
[(

1 ±W2k(2m+1)
16

)

+W2p+1
16

(
1 − ±W2k(2m+1)

16

)]
, (45)

m, p ∈ {0, 1, 2, 3}
l ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} .

By counting the number of free variables we get for the ca-
pacity of this code G1

16 = 4 · 16 · 8 · 2 = 210. But there are
more orthogonal sets of sequences in G16. The set G8 does
not exhaust all complementary pairs. Note that

2
∣∣∣C(Wk

4)
∣∣∣2+
∣∣∣D(Wk

4)
∣∣∣2+
∣∣∣E(Wk

4)
∣∣∣2=16 ∀k ∈ {0, 1, 2, 3} (46)

Therefore we can construct more codewords in the set G16

as follows

A16,2(Wk
16) = Wlk

16

[
C(W4k

16) ±W2k
16 E(W4k

16)

±W (2p+1)k
16

(
C(W4k

16) ±W2k
16 D(W4k

16)
)]

(47)

p ∈ {0, 1, 2, 3} l ∈ {0, 1, 2, 3, 4, 5, 6, 7}
This can be verified to be codeword by checking the PCF:
∣∣∣A16,2(Wk

16)
∣∣∣2 =
∣∣∣C ±W2k

16 E
∣∣∣2 +
∣∣∣C ±W2k

16 D
∣∣∣2

Table 1 Periodic symmetric complementary sequences with length
N=8.

+2Re
{
Wk(2p+1)

16 (C ±W2k
16 D)(C ±W2k

16 E)∗
}

= 16 + 2Re
{
W (2 m+1)k

16 |C|2
}

= 16 + 8Re
{
W (2p+1)k

16 (1 −W8k
16)
}

(48)
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where C = C(Wk
4) D = D(Wk

4). This means that the PCF
is half-band, or

r[2n] = 0 (49)

r[n + 1] ∈ {0,±4} (50)

Taking into consideration the number of sequences in (47) it
is figured out that there are 29 such sequences and the total
capacity of G16 is Q16 = 210+29 = 3 ·29. Equations (45) and
(47) represent an explicit construction of codewords with
N= 16. For example when l = m = p = 0 from (45) we get

A16,1(Wk
16) = B

[
(1 +W2

16) +W1
16(1 −W2

16)
]

(51)

There are eight codewords generated by A16,1:

111 − 1 − 1 − 1 − 11 − 1 − 1 − 11 − 1 − 1 − 11 (52)

1 − 1 − 1 − 1 − 11 − 1 − 1 − 11 − 1 − 1 − 1111 (53)

−1 − 1 − 11 − 1 − 1 − 11 − 1 − 1 − 11111 − 1 (54)

−11 − 1 − 1 − 11 − 1 − 1 − 11111 − 1 − 1 − 1 (55)

−1 − 1 − 11 − 1 − 1 − 11111 − 1 − 1 − 1 − 11 (56)

−11 − 1 − 1 − 11111 − 1 − 1 − 1 − 11 − 1 − 1 (57)

−1 − 1 − 11111 − 1 − 1 − 1 − 11 − 1 − 1 − 11 (58)

−11111 − 1 − 1 − 1 − 11 − 1 − 1 − 11 − 1 − 1 (59)

The analytical formulas get too complicated for higher val-
ues of N.

4. Orthogonal Anti-symmetric Periodic Codes

In this section again orthogonal codes are constructed using
wavelet-based approach. The orthogonal sets that are ob-
tained offer high capacities and simple signal processing op-
erations. The orthogonal set of codewords is {s0 s1 · · · sM−1}
where si = (a[2i], a[2i+1], · · · , a[2i+N−1]), and a[N+ i] =
−a[i], a[2N + i] = a[i]. It also assumed that a[i] can take
only two values: 1, or −1. The number of codewords is
M = N/2 each having length N. Since periodicity is as-
sumed the properties of the periodic autocorrelation func-
tion

r[n] =
N−1∑

i=0

a[i]a[i + n] (60)

which has a period equal to 2N, are very important. The pe-
riodic autocorrelation function has the following properties:

1. r[0] =
N−1∑

i=0

a2[i] = N (61)

2. r[±N] =
N−1∑

i=0

a[i]a[i ± N] = −
N−1∑

i=0

a2[i] = −N (62)

3. r[n]=−
N−1∑

i=0

a[i]a[i ± N + n]=−r[n ± N] = r[−n] (63)

4. r[N/2] = 0. This property can be established by

r[N/2] =
N−1∑

i=0

a[i]a[N/2 + i]

= a[0]a[N/2] + a[1]a[N/2 + 1] + · · ·
+ a[N/2 − 1]a[N − 1]

− a[N/2]a[0] − a[N/2 + 1]a[1] − · · ·
− a[N − 1]a[N/2 − 1] = 0 (64)

5. r[2n] = 0 (mod 4), r[2n + 1] = 2 (mod 4). These prop-
erties are not trivial and need a proof. It is convenient to use
the transform b[i] = (1 − a[i])/2. Then the PAF becomes

r[n] =
N−1∑

i=0

(1 − 2b[i]) (1 − 2b[i + n])

=

N−1∑

i=0

(1 − 2b[i] − 2b[i + n] + 4b[i]b[i + n])

= N−2

⎡⎢⎢⎢⎢⎢⎢⎣
N−1∑

i=0

(b[i]+b[i+n])

⎤⎥⎥⎥⎥⎥⎥⎦+4
N−1∑

i=0

b[i]b[i+n] (65)

But considering the anti-symmetry a[N+ i] = −a[i] we have

1 = b[N + i] + b[i] (66)

and therefore

N−1∑

i=0

(b[i] + b[i + n]) = 2
N−1∑

i=0

b[i] + n − 2
n−1∑

i=0

b[i]. (67)

Finally

r[n]=N−4
N−1∑

i=0

b[i]−2n+4
n−1∑

i=0

b[i]+4
N−1∑

i=0

b[i]b[i+n] (68)

Since N is a power of 2, the properties are easily established.
Again the necessary and sufficient condition to have orthog-
onality is that the autocorrelation is half-band:

r[2n] = 0, n = 1, 2, · · ·N/4 − 1 (69)

which also means that

R0[2k] = |A0[2k]|2 + |A1[2k]|2 = N. (70)

Now, for the polyphase components, the PCF of
(ai, ai+2, · · · ai+N−2), i = 0, 1 are

ri[n]=
N/2−1∑

k=0

a[2k+2]a[2(k+n)+i]; a[N+i]=−a[i], (71)

Ri[k]=
N/2−1∑

n=0

ri[n]Wnk
N/2=Ai[k]Ai[−k]= |Ai[k]|2 , i=0, 1 (72)

where r[2n] = r0[n] + r1[n] and therefore, a necessary and
sufficient condition for orthogonality is that

r0[n] = −r1[n] n = 1, 2, · · ·N/4 − 1 (73)

The vectors for which the above condition is fulfilled are
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called complementary. The complementary property is in-
variant under the following transformations:

1. If A0(z) and A1(z) are complementary, then Ã0(z) and
Ã1(z) will also be complementary.
2. The complementary property is invariant under cyclic
shifts.

The GRS sequences are contained entirely in the new class
of sequences, i.e. they are a subset of it. This implies, of
course, that the number of the new sequences exceeds the
number of GRS sequences for the same length.

The codewords of length N are obtained as s2i =

(a[2i], a[2i + 1], · · · , a[2i + N − 1]). One sequence gener-
ates two codes s2i and s2i+1 with capacities M = N/2 each
having N/2 codewords. There are two cases:

1. The polyphase components (i.e. the complementary vec-
tors) of a codeword are themselves codewords:

r0[2n] = r1[2n] = 0 r0[2n + 1] = −r1[2n + 1] (74)

2. The polyphase components of a codeword are not code-
words themselves:

ri[2n] � 0 (75)

but still then r0[n] = −r1[n] continues to hold.
It is clear that in the first case an orthogonal antisymmet-
ric periodic code with length N and volume N/2 can be
constructed iteratively, starting from codewords with length
N/2. Suppose we have a codeword with length N/2, which
is also a complementary vector, A0(z) ∈ GN/2. It must be the
first polyphase component of a codeword in the set GN , but
it can be further decomposed using the polyphase decompo-
sition

A0[2k] = A00[4k] +W1
N/2A01[4k] (76)

The second polyphase component can be constructed in two
ways. The first is

A1[2k] = W2l
(
A00(4k) −W2kA01(4k)

)
(77)

and the second

A1[2k] = W−2l
(
A00(4k) − W̃2kA01(4k)

)
(78)

It is obvious that A1 ∈ GN/2, since A1 has polyphase compo-
nents which have equal magnitudes as the polyphase com-
ponents of A0. Then, a codeword can be constructed, of
which A0 and A1 are the first and second polyphase compo-
nents, correspondingly:

|A0|2 + |A1|2 = 2
[
|A00|2 + |A01|2

]
= N (79)

4.1 Construction of Codewords

From the properties of the autocorrelation function, dis-
cussed in the beginning of this section, it follows that all
combinations of four digits that can take the values of +1
and −1 are codewords and therefore the volume of the code
is Q4 = 24.

4.1.1 Codewords with Length N=8

For N=8, we need eight elements to construct the codewords

P1 = 1 +W1
8 +W2

8 +W3
8 (80)

P2 = 1 +W1
8 −W2

8 −W3
8 (81)

P3 = 1 +W1
8 +W2

8 −W3
8 (82)

P4 = 1 −W1
8 −W2

8 −W3
8 (83)

Q1 = 1 −W1
8 +W2

8 −W3
8 (84)

Q2 = 1 −W1
8 +W2

8 +W3
8 (85)

Q3 = 1 +W1
8 −W2

8 +W3
8 (86)

Q4 = 1 −W1
8 −W2

8 +W3
8 (87)

The eight basic elements and inversions can exhaust all com-
binations of four digits, i.e. all codewords in the set G4. Note
that

|P1|2 = |P2|2 = |P3|2 = |P4|2 = 4 + 2
√

2 (88)

|Q1|2 = |Q2|2 = |Q3|2 = |Q4|2 = 4 − 2
√

2 (89)

From (70), when N= 8, the necessary condition for orthog-
onality is |A0|2 + |A1|2 = 8. From (88) and (89) we have
|P1|2+ |Q1|2 = |P1|2+ |Q2|2 = |P1|2+ |Q3|2 = |P1|2+ |Q4|2 = 8
and P1 can be replaced by P2, P3, P4. Therefore, we can
construct the codewords by

A8 = ±Wl
16

(
M ±W1

16N
)

M ∈ {P1, P2, P3, P4}
N ∈ {Q1,Q2,Q3,Q4} l ∈ {0, 1} (90)

The total numbers of different codewords will be 2 · 2 · 22 ·
2 · 22 = 27. They are listed in Table 2.

4.1.2 Codewords with Length N=16

For N=16 the value of
∣∣∣Pi +W2

16Qi

∣∣∣2 is not constant for i =
1, 2, 3, 4. The following DFTs are defined:

S 4(i−1)+ j = Pi +W2
32Qj (91)

T4(i−1)+ j = Pi −W2
32Qj (92)

U4(i−1)+ j = Qi +W2
32Pj (93)

V4(i−1)+ j = Qi −W2
32Pj (94)

for i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3, 4}. The squared absolute
values of these DFTs take only four values, and therefore
we separate them in four groups:
Group1

|S 1|2 = |S 2|2 = |S 7|2 = |S 8|2 = |S 13|2 = |T10|2 = |T12|2
= |T15|2 = |U3|2 = |U7|2 = |U9|2 = |U12|2
= |U16|2 = |V1|2 = |V6|2 = |V14|2 = 10.1648 (95)

Group2

|S 10|2 = |S 12|2 = |S 15|2 = |T1|2 = |T2|2 = |T7|2 = |T8|2
= |T13|2 = |U1|2 = |U6|2 = |U14|2 = |V3|2 = |V7|2
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Table 2 Anti-symmetric periodic complementary sequences with length N=8.
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= |V9|2 = |V12|2 = |V16|2 = 5.8352 (96)

Group3

|S 3|2 = |S 5|2 = |S 9|2 = |S 11|2 = |S 16|2 = |T4|2 = |T6|2
= |T14|2 = |U2|2 = |U4|2 = |U5|2 = |U10|2
= |U11|2 = |V8|2 = |V13|2 = |V15|2 = 13.2263 (97)

Group4

|S 4|2 = |S 6|2 = |S 14|2 = |T2|2 = |T5|2 = |T9|2 = |T11|2
= |T16|2 = |U8|2 = |U13|2 = |U15|2 = |V2|2 = |V4|2
= |V5|2 = |V10|2 = |V11|2 = 2.7737 (98)

From (70) we know that the sufficient condition is |A0|2 +
|A1|2 = 16. So the codewords can be constructed by.

A16,1 = A(W32) = ±Wl
32(X ±W1

32Y) l ∈ {0, 1} (99)

X ∈ {S 1, S 2, S 7, S 8, S 13, T10, T12, T15,U3,U7,U9,U12,

U16,V1,V6,V14}
Y ∈ {S 10, S 12, S 15, T1, T2, T7, T8, T13,U1,U6,U14,V3,

V7,V9,V12,V16}
A16,2 = A(W32) = ±Wl

32(Z ±W1
32J) l ∈ {0, 1} (100)

Z ∈ {S 3, S 5, S 9, S 11, S 16, T4, T6, T14,U2,U4,U5,U10,

U11,V8,V13,V15}
J ∈ {S 4, S 6, S 14, T2, T5, T9, T11, T16,U8,U13,U15,V2,

V4,V5,V10,V11}
The total number of codewords of A16,1 is 2·2·24 ·2·24 = 211

and the total number of codewords of A16,2 is 2 ·2 ·24 ·2 ·24 =

211. This makes the total number of codewords with length
16 equal to 212.

5. Explicit Formulas for GRS Pairs

The problem of generation of all Golay-Rudin-Shapiro se-
quences is of considerable importance. For example, in the
context of wireless communications, every user is assigned
a different sequence, and then it is necessary to generate all
sequences of a given length. The non-periodic correction
function is

r[m]
N−1−m∑

i=0

a[i]a[i + m] (101)

In the previous two sections two periodic extensions of the
sequence (a[0]a[1] · · · a[N + i]) were considered: symmet-
ric, where a[N + i] = a[i], and anti-symmetric, where
a[N + i] = −a[i]. It is convenient to denote the periodic au-
tocorrelation functions by rs[m] and ra[m] for the symmet-
ric and anti-symmetric cases, respectively. Note that the re-
lationship among the non-periodic autocorrelation function
r[m] and the two periodic autocorrelation functions rs[m]
and ra[m] is

r[m] = rs[m] + ra[m] (102)

rs[m] = r[m] + r[N − m] (103)

ra[m] = r[m] − r[N − m] (104)

Theorem 4 The necessary and sufficient condition the non-
periodic autocorrelation function to be half-band,

r[2m] = 0 m = 1, 2, · · ·N/2, (105)

is that

rs[2m] = ra[2m] = 0. (106)

The proof can immediately be obtained using (102).
Corollary 1 The set of Golay sequences is the intersection
of the sets of codewords belong to the orthogonal symmetric
and antisymmetric cyclic codes. In other words the Golay
sequences are simultaneously codewords of two codes.

5.1 Construction of Complementary Sequences

For N=4, it is easily verified that the total capacity is 8.

5.1.1 Complementary Sequences with Length N=8

When N=8 the codewords in the symmetric code are de-
scribed by the formula

A[k] = A(Wk
8) = ±Wkl

8 B(W2k
8 )(1 ±Wk(2 m+1)

8 )

m ∈ {0, 1, 2, 3} l ∈ {0, 1, 2, 3, 4, 5, 6, 7} (107)

The DFTs of the codewords in the anti-symmetric case are

A8 = ±Wl
16

(
M ±W1

16N
)

M ∈ {P1, P2, P3, P4}
N ∈ {Q1,Q2,Q3,Q4} l ∈ { 0,1 } . (108)

In the anti-symmetric code P3, P4,Q2,Q3 can be the cyclic
shifts and inversion of B(W1

4 ). The GRS sequences for N=8
are the intersection of (107) and (108) and can be con-
structed as

A8 = ±Wl
16

(
M ±W1

16N
)

M ∈ {P3, P4}
N ∈ {Q2,Q3} l ∈ { 0,1 } . (109)

The volume of the set is 2 · 2 · 2 · 2 · 2 = 25, which coincides
with the known previously obtained estimate.

5.1.2 Codewords with Length N=16

For N=16, the symmetric codewords can be written in the
following form:

A16,1(Wk
16) = ±Wkl

16B(W4k
16)
[(

1 ±W2k(2m+1)
16

)

+W2p+1
16

(
1 − ±W2k(2m+1)

16

)]
(110)

m, p ∈ {0, 1, 2, 3}
l ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
A16,2(Wk

16) = Wlk
16

[
C(W4k

16) ±W2k
16 E(W4k

16)

±W (2p+1)k
16

(
C(W4k

16) ±W2k
16 D(W4k

16)
)]

(111)

p ∈ {0, 1, 2, 3} l ∈ {0, 1, 2, 3, 4, 5, 6, 7}
In the anti-symmetric case codewords can be constructed by
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choosing T10, T15,U7,U12 from Group 1, S 10, S 15,V7,V12

from Group 2, S 11, T14,U11,V8 from Group 3, and
S 14, T11,U8,V11 from Group 4. Therefore

A16,1 = A(W32) = ±Wl
32(X ±W1

32Y) l ∈ {0, 1} (112)

X ∈ {T10, T15,U7,U12} Y ∈ {S 10, S 15,V7,V12}
A16,2 = A(W32) = ±Wl

32(Z ±W1
32J) l ∈ {0, 1} (113)

Z ∈ {S 11, T14,U11,V8} J ∈ {S 14, T11,U8,V11}
For the symmetric case, from (111) the codewords are con-
structed by the cyclic shifts of C(W4k

16),D(W4k
16), E(W4k

16).
Therefore in the anti-symmetic case, P2,Q4 corresponds
to cyclic shifts of C(W4k

16), P1 corresponds to D(W4k
16), and

Q1 corresponds to E(W4k
16). The combination of P1,Q4

and P2,Q1 can be used to construct the Golay sequences
with length N=16. Therefore, referring to Eqs. (95)–(98),
S 5, T4,U2,V13 can be chosen in Group 3, and S 4, T5,U13,V2

can be chosen in Group 4, in the following way:

A16,3 = A(W32) = ±Wl
32(X ±W1

32Y) l ∈ { 0,1 } (114)

X ∈ {S 5,U2} Y ∈ {S 4,U13}
A16,4 = A(W32) = ±Wl

32(Z ±W1
32J) l ∈ { 0,1 } (115)

Z ∈ {T4,V13} J ∈ {T5,V2}
From (112) the number of codewords can be generated is
2 · 2 · 22 · 22 = 26, and from (113) the number of codewords
can be generated is 2 · 2 · 22 · 22 = 26. From (114) the
number of codewords can be generated is 2 · 2 · 2 · 2 · 2 = 25,
and from (115) the number of codewords can generated is
2 ·2 ·2 ·2 ·2 = 25. So total volume of the set for E sequences
with length 16 will be 26 + 26 + 25 + 25 = 27 + 26 = 192,
which coincides with the previously obtained estimate.

6. Conclusions

We have developed novel analytic solutions for periodic and
aperiodic complementary sequences. These analytic solu-
tions allow the generation of all periodic and non-periodic
complementary sequences when the length is a power of
two. Previously this could only be accomplished with
computer searches. The approach that has been proposed
here can be used, in principle, for other complementary se-
quences, like ternary complementary sequences, advanced
in [21].

The novelty in this work from the point of view of
wavelet transforms is that non-regular wavelets are con-
structed here. Note that filter banks have always been de-
signed so that in addition to perfect reconstruction the fil-
ters have “good” frequency responses; e.g. H0(z) has always
been required to be a good low pass filter and H1(z) is to be
a good high pass filter [7]. This requirement is equivalent to
requiring that the filter bank offer energy concentration and
perform well in applications which require energy concen-
tration like compression. Complementary sequences corre-
spond to filter banks where the filters H0(z) and H1(z) are
not “good” filters in this traditional sense, i.e. these filters

have pseudo-random frequency responses. These filters of-
fer energy spreading as opposed to energy compaction. This
property is not desirable in data compression, but very de-
sirable in CDMA wireless communication systems [11].
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