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Explicit Formula for Predictive FIR Filters and Differentiators
Using Hahn Orthogonal Polynomials

Saed SAMADI†a), Nonmember and Akinori NISHIHARA††b), Fellow

SUMMARY An explicit expression for the impulse response coeffi-
cients of the predictive FIR digital filters is derived. The formula speci-
fies a four-parameter family of smoothing FIR digital filters containing the
Savitsky-Goaly filters, the Heinonen-Neuvo polynomial predictors, and the
smoothing differentiators of arbitrary integer orders. The Hahn polynomi-
als, which are orthogonal with respect to a discrete variable, are the main
tool employed in the derivation of the formula. A recursive formula for the
computation of the transfer function of the filters, which is the z-transform
of a terminated sequence of polynomial ordinates, is also introduced. The
formula can be used to design structures with low computational complex-
ity for filters of any order.
key words: Hahn polynomials, orthogonal polynomials of a discrete vari-
able, polynomial signals, polynomial impulse response, predictive FIR fil-
ters, power moments, white noise, digital differentiators

1. Introduction

Least-squares digital filters having the ability to pass the
polynomial component of the input signal and suppress the
power of its additive white noise component have a long
multifaceted history. They have been studied by actuaries,
mathematicians, analytical chemists, engineers and physi-
cists both theoretically and experimentally. The smooth-
ing effects of these filters on noisy experimental data were
known to the actuaries of the late 19th century in connection
with the problem of graduation of mortality tables. Vari-
ous types of these filters, which were known to the early
actuaries as adjustment formulas [1] or linear compounds
[2], were intensively studied in the actuarial and mathemat-
ical literature of the first half of the 20th century. The first
edition of an influential book [3] dealing with the subject
and its mathematical background was published as early as
1924. Although many variations of the filters exist in the
literature, they are most generally designed to possess the
following features. Consider a causal discrete-time signal
x(n) of the form

x(n) = f (n) + e(n), n ≥ 0, (1)

where f (n) is a polynomial of degree M and e(n) is a noise
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or error sequence. It is assumed that e(n) is stationary with
zero mean and known autocorrelation function. The filter
provides a prediction of, or a smoothed value for, the input
signal given by

y(n) =
∑
i≥0

hi x(n − i). (2)

The coefficients hi must be determined so that the follow-
ing two groups of conditions are satisfied simultaneously.
The first group of conditions deal with the processing of the
polynomial component f (n). In the general form, denoting
the mth-order derivaive of f (n) with respect to n by f (m)(n),
and provided that e(n) = 0, it is required that hi are so cho-
sen that

y(n) = f (m)(n − p) (3)

for a fixed integer m and a real-valued delay parameter, or
predication step, p. In many applications where the preser-
vation of the polynomial component is a goal, the value
m = 0 is adopted in (3). The second group of conditions
are imposed on hi in order to control the output standard
deviation when the noise component e(n) is present. These
conditions vary in complexity from the simple classical case
involving minimzation of the power of e(n), which is as-
sumed to be white noise, to the more complicated cases in-
volving the minimization of the power of the higher order
differences of e(n) [4]. An ideal predictive filter suppress-
ing the white noise component and delaying the polynomial
component is show in Fig. 1.

In the engineering literature, the initial motivation be-
hind the study of the filters was to extend the results of
Zadeh and Ragazzini [5], who developed a continuous lin-
ear system for extracting the polynomial component from a
mixture of signal and noise, to the discrete-time signals. For
instance, Lees [7], Johnson [6] and Blum [8] studied and
solved the problem to various degrees when hi has a finite-
length. Specifically, the results by Blum [8], being more
general, are expressed in terms that are similar to the mod-
ern theory of discrete time signals and systems. Blum also
designed IIR type filters. A notable result by Trench [9]
formulates the problem in the z domain as opposed to the
time-domain approach taken by Blum. It also allows the de-
signer to formulate the problem for a wider variety of noise
components.

An important signal processing application of these
least-squares smoothers, popularized by the work of Sav-
itzky and Golay [10], is the smoothing of noisy spectral
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(a)

(b)

Fig. 1 Ideal predictive filters. The filter in (b) has the ability to
differentiate the polynomial component.

data. Another rather recent incarnation of these filters can be
found in a work of Heinonen and Neuvo [11], where a pre-
dictive digital filter was designed as a linear building block
in a non-linear median filtering scheme. Like their classical
predecessors, the Heinonen-Neuvo (H-N) filters operate on
the input signal values within a finite-length sliding window
and calculate a prediction value as the output. The predic-
tion is formulated based on the requirement that the filter
must be exact for the polynomial component f (n), while
yielding a minimized noise gain for the case where e(n)
is produced by a white noise source. The distinctive fea-
ture of the initial designs of the H-N filters is that, unlike
most of their classical counterparts that predicted the true
value of the sample located in the middle of the filtering
window, they were designed to predict the value of the sam-
ple located one time index outside the filtering window. The
H-N filters and their differentiator counterparts were later
applied to porblems in control instrumentation [12], where
they have been referred to as polynomial predictive filters.
In their original form, the H-N filters were parametrized
by the length of the filter and the degree of the polynomial
component in the input signal. Nevertheless, the prediction
or delay parameter p whose value is fixed in the Savitzky-
Golay filters and the original H-N filters can be thought of
as a third parameter. In the signal processing literature, the
generalization of p to an arbitrary value was considered in
[13], where a recursive structure for the realization of the
filters with a low computational complexity was proposed.
Henceforth, we shall refer to the both types of these filters
as the H-N filters without making a distinction over the pa-
rameterization of the prediction parameter.

Focusing on the signal processing literature, closed-
form formulas for the impulse response coefficients of the
H-N filters can be found in [11] for polynomial components
of degrees 1, 2, and 3. In [13], formulas for an arbitrary

p were developed for polynomial models of degrees 1 and
2. In both cases, the formulas are given explicitly for hi as
polynomials in i whose coefficients depend on the degree of
the polynomial model, the prediction paramter, and the over-
all length of the filter. In both cases, however, no general
closed-form formula has been given. An exception in this
regard, is a matrix formulation of the H-N filtering problem
that results in a closed-form solution through the concept
of the generalized inverse of a matrix [14]. This form of
solution, requiring matrix inversion and matrix multiplica-
tion operations, can be viewed as a numerical solution to
the problem.

It is the purpose of this paper to provide an explicit
expression for the impulse response coefficients of the pre-
dictive smoothers, which include H-N filters, and their dif-
ferentiator counterparts. Our results are given in the form of
a concise formula for hi as a polynomial in i, similar to those
obtained in [11] and [13]. We use the orthogonal polynomi-
als of a discrete variable to represent the solution. The use of
the orthogonal polynomials of a discrete variable for the des-
gin of the classical Savitzky-Golay-type least-squares filters
has some precedents in the engineering literature [8], [15],
[16]. One can identify two forms of applications of these
orthogonal polynomilas. The most common form of the ap-
plication has been in connection with the representation and
modeling of the input signal. For example, in [8] the author
expresses the polynomial component f (n) using the orthog-
onal polynomials of a discrete variable to derive an explicit
expression for the impulse response of the filter. The other
form of application of the orthogonal polynomials can be
found in [15], where they were used in connection with the
Hilbert space methods. In that approach, the polynomials
are introduced as a tool in connection with the minimization
process. Our approach, however, differs from these two ex-
isting categories. In this paper, the orthogonal polynomials
are used to express the conditions for the polynomial pro-
cessing requirements and, at the same time, to represent the
impulse response coefficients hi.

The other goal of this paper is to derive explicit rational
expressions for the transfer function of the filters. Although
such expressions are given in [13] for two examples with
polynomial models of degrees 1 and 2, the general rational
expression for the transfer function is not available in the
literature. The rational form of the transfer function is of
special interest for the recursive realization of all FIR filters
having polynomial impulse responses in the form of struc-
tures of low computational complexity.

The organization of this paper is as follows. The de-
sign problem is stated in Sect. 2 for a polynomial predictor
(m = 0) and a smoothing differentiator (m ≥ 1). The fre-
quency domain properties of the solution are also analyzed.
Hahn polynomials and their orthogonality properties are re-
viewed in Sect. 3. An explicit solution is then derived in the
form of a linear combination of the products of Hahn poly-
nomials. The rational form of the transfer function is derived
in Sect. 4. A recursive scheme for the computation of the ra-
tional transfer function is also developed. Conclusions are



SAMADI and NISHIHARA: PREDICTIVE FILTERS
1513

drawn in the final section.

2. Statement of Problem

After introducing the preliminaries and notations used in
this paper, we provide a formulation of the design problem
as that of the determination of a finite-length sequence hav-
ing prescribed power moments. Both the basic smoothing
problem and the more general smooth differentiation prob-
lem of an arbitrary order are considered here.

2.1 Statement of Basic Smoothing Problem

Consider a discrete-time signal expressed as

x(n) =
M∑

k=0

ak nk + e(n) (4)

where e(n) is a random, stationary, uncorrelated noise sig-
nal, or an error term, satisfying

E(e(n)) = 0, E(e(n)e(n′)) =

⎧⎪⎪⎨⎪⎪⎩
σ2 n = n′

0 n � n′
(5)

In other words, the signal x(n) is modeled as a polynomial
of finite degree M ≥ 0, which constitutes the determinis-
tic component of x(n), plus a random component assumed
to be due to a white noise source. The result of the con-
volution of x(n) with an impulse response sequence hi of
lenght N ≥ 1 is the desired smoothed output signal y(n).
The desired output can generally be the mth order derivative
of the polynomial component evaluated at an arbitrary point
as given by (3). Focusing on the case where m = 0 in (3),
the problem is that of retaining the non-random polynomial
component contained in the input signal without differentia-
tion. This polynomial component is generated at the output
with a delay of p samples. The numerical value of p, which
can be an integer or a rational number, depends on the ap-
plication at hand. This requirement is stated mathematically
as

N−1∑
i=0

hi

M∑
k=0

ak (n − i)k =

M∑
k=0

ak (n − p)k. (6)

The variance of the additive noise contained in the output is
altered by the convolution and is given by

E

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝

N−1∑
i=0

hi e(n − i)

⎞⎟⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠ = σ2

N−1∑
i=0

h2
i . (7)

To obtain a smooth output, it is required that hi is so chosen
that the noise gain, given by

NG =
N−1∑
i=0

h2
i , (8)

is minimized.

Of the above two requirements, (6) and (8), on the im-
pulse response coefficients, condition (6), which ensures the
retention of the polynomial part, can be expressed in terms
of the power moments of hi. By noting that the ability of the
filter to exactly delay any polynomial of degree M is equiv-
alent to the property that all monomials xk, k = 0, 1, . . . ,M,
be exactly delayed in the same manner, one can obtain the
equivalent conditions

N−1∑
i=0

hi(n − i)k = (n − p)k, k = 0, 1, . . . ,M. (9)

Application of the binomial expansion theorem to the left
and right sides of (9) gives

k∑
j=0

(−1)k− j

(
k
j

)
nj

N−1∑
i=0

ik− jhi

=

k∑
j=0

(−1)k− j

(
k
j

)
nj pk− j, k = 0, 1, . . . ,M. (10)

Since the relations (10) should hold as identities for all val-
ues of n, by comparing the same powers in the sums on the
left and right, we arrive at the conditions

N−1∑
i=0

i j hi = pj j = 0, 1, . . . ,M, (11)

specifying the power moments of the impulse response co-
efficients from the 0th to the Mth order.

2.2 Frequency Domain Properties of Solution to Basic
Smoothing Problem

To study the implications of imposing the moment condi-
tions (11), we turn to the frequency domain. The frequency
response of the filter is given by

H(ω) =
N−1∑
i=0

hie
−j iω, (12)

where j =
√−1. On expanding the right side of (12) in the

Taylor form about ω = 0, and assuming that (11) holds, we
obtain

H(ω) =
N−1∑
i=0

hi

∞∑
k=0

(−j iω)k

k!

=

∞∑
k=0

(−jω)k

k!

N−1∑
i=0

ikhi

=

M∑
k=0

(−jω)k

k!
pk + O(ωM+1), (13)

where O(ωM+1) contains all the terms with powers (M + 1)
or higher. Consequently, we can write

H(ω) = e−j pω + O1(ωM+1), (14)
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which shows, since O1(ωM+1) again contains all the terms
with powers (M + 1) or higher, that the frequency response
is a flat approximation to the ideal delay of p samples at
ω = 0. This confirms the well-known fact that the magni-
tude response of the filter has a flat shape around the zero
frequency.

2.3 Shifted Moments

The p-shifted moments of a causal signal x(n) are defined as

Mp =
∑

n

(n − p) j x(n), (15)

where the summation index n above as well as in all other
sums where the range is not explicitly indicated runs over
all integers. By applying x(n) to a filter satisfying (9), we
get an output y(n) whose p-shifted moments are∑

n

(n − p) jy(n) =
∑

n

(n − p) j
∑

n′
x(n′)h(n − n′)

=
∑

n′
x(n′)

∑
n

(n − p) jh(n − n′)

=
∑

n′
n′ j x(n′) (16)

This shows that the p-shifted moments of the output signal
of a predictive filter is equal to the power moments of its
input signal.

2.4 Smooth Differentiation Problem

We can recast the problem of exact integer-order differenti-
ation of a degree M polynomial signal, which corresponds
to the case where m ≥ 1 in (3), as the equivalent problem of
exact differentiation of the monomial xk for k = 0, 1, . . . ,M.
We start with the first-order differentiation and then general-
ize to the differentiation by an arbitrary higher integer order.
The coeffecients hi of an FIR system designed for the pur-
pose of exact first-order differentiation of xk must satisfy

N−1∑
i=0

hi(n − i)k =

⎧⎪⎪⎨⎪⎪⎩
0, k = 0

k(n − p)k−1, k = 1, . . . ,M.
(17)

In the expanded form, the conditions given by (17) can be
expressed as the combination of the two equations

N−1∑
i=0

hi = 0, (18)

k∑
j=0

(−1)k− j

(
k
j

)
nj

N−1∑
i=0

ik− jhi

= k
k−1∑
j=0

(−1)k−1− j

(
k − 1

j

)
nj pk−1− j, k = 1, . . . ,M.

(19)

Using (18) and the properties of the binomial coefficients,

(19) can be written as

k−1∑
j=0

(−1)k− j

(
k
j

)
nj

N−1∑
i=0

ik− jhi

= −
k−1∑
j=0

(−1)k− j

(
k
j

)
(k − j)nj pk−1− j, k = 1, . . . ,M.

(20)

After some simple algebraic manipulations, it can be shown
that (20) is equivalent to

N−1∑
i=0

i jhi = − jp j−1, j = 1, 2, . . . ,M. (21)

The above set of power moment conditions together
with (18) constitute the necessary and sufficient for a first-
order FIR differentiator to be exact for polynomial signals
of degree M.

In general, it can be shown, by mathematical induction,
that the conditions on the impulse response coefficients of an
exact mth order differentiator, m ≥ 1, producing a delay of
p samples for the Mth degree polynomial signals are given
by

N−1∑
i=0

i jhi = 0 j = 0, . . . ,m − 1,

N−1∑
i=0

i jhi = (−1)m j( j − 1) · · · ( j − m + 1)pj−m,

j = m, . . . ,M. (22)

We can use the falling factorial powers in order to unify the
set of condition (22) with those given by (11) in a concise
manner. The falling factorial power [17]

ab = a(a − 1) . . . (a − b + 1) (23)

possesses the property that for integers a and b, it vanishes
when 0 ≤ a < b. It is also conventionally assumed that a0 =

1. Using the falling factorial powers, the conclusion of this
subsection is concisely stated as follows. For an FIR system,
in order to be an exact mth order differentiator, m = 0, 1, . . .,
and to produce a delay of p samples on a polynomial input
of order M, it is necessary and sufficient that

N−1∑
i=0

i jhi = (−1)m jm p j−m j = 0, . . . ,M. (24)

The problem to be solved in this paper is that of the min-
imization of NG (8) under the linear side conditions given
by (24). This result of this constrained minimization is the
H-N-type predictive filters for m = 0 (and p = N for exam-
ple) and the predictive differentiators for m ≥ 1.

2.5 Frequency Domain Properties of Solution to Smooth
Differentiation Problem

The power moment conditions (24) have been derived in
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the time domain. They, however, have a direct frequency-
domain interpretation. To see the relation between the two
domains, we follow the steps taken in (13) and use the defi-
nition of the falling factorial powers to write

H(ω) =
∞∑

k=0

(−jω)k

k!

N−1∑
i=0

ikhi

=

M∑
k=0

(−jω)k

k!
(−1)mkm pk−m + O2(ωM+1)

= (−jω)m
M∑

k=m

(−jω)k−m

(k − m)!
pk−m + O2(ωM+1),

(25)

where O2(ωM+1) contains all the terms with powers (M + 1)
or higher of ω. In the last step of the manipulations in (25),
we have used the relation k! = km(k − m)!. We can further
write,

H(ω) = (−jω)m e−jωp + O3(ωM+1), (26)

where O3(ωM+1) contains all the terms having powers (M +
1) or higher of ω. This shows that the power moment con-
ditions force the transfer function to approximate an mth or-
der differentiation plus a delay of p samples in a flat manner
about the zero frequency.

3. Solution by the Hahn Orthogonal Polynomials

As the first step toward obtaining the explicit solution, we
express the side conditions derived in the preceding section
using an orthonormal set of polynomials instead of sim-
ple monomial powers. The rationale behind this will be-
come clear shortly. The orthonormal set of our choice is the
Hahn polynomials. The Hahn polynomials may be defined
in terms of the generalized hypergeometric series

3F2(a1, a2, a3; b1, b2; z) =
∞∑

k=0

ak
1 ak

2 ak
3

bk
1 bk

2

· zk

k!
, (27)

where

a0 = 1, ak = a(a + 1) · · · (a + k − 1), k ≥ 1. (28)

For a positive integer N and for real α > −1, β > −1, the
Hahn polynomials are defined by [18]

Qn(x; α, β,N)
∆
= 3F2(−n,−x, n + α + β + 1; α + 1,−N + 1; 1),

n = 0, 1, . . . ,N − 1.

(29)

The right side of the above definition is a terminating hyper-
geomertic series and can be written in the form of a finite
sum as

Qn(x; α, β,N) =
n∑

k=0

(−n)k (−x)k (n + α + β + 1)k

(α + 1)k (−N + 1)k k!
.

(30)

Hence, (29) defines a polynomial of degree at most n in x.
For n = 0, we have Q0(x, α, β,N) = 1. A useful property of
the Hahn polynomials is that, for a given n, they constitute a
finite system of N polynomials orthogonal over the discrete
values of x. Specifically, the orthogonality relation is given
by [18]

N−1∑
x=0

Qn(x; α, β,N) Qm(x; α, β,N)ρ(x;α, β,N)

=
1

πn(α, β, n)
δmn,

(31)

where δmn is the Kronecker symbol, the weight function is
given by

ρ(x;α, β,N) =

(
α + x

x

)(
β + N − 1 − x

N − 1 − x

)
(
α + β + N

N − 1

) , (32)

and where

πn(α, β,N) =

(
N − 1

n

)
(
α + β + N + n

n

) Γ(β + 1)
Γ(α + 1)Γ(α + β + 1)

Γ(α + n + 1)Γ(α + β + n + 1)
Γ(β + n + 1)Γ(n + 1)

2n + α + β + 1
α + β + 1

.

(33)

In the orthogonality relation (31), we may select the param-
eters α and β in a way that ρ(x;α, β,N) is independent of x.
This is achieved if we set α = β = 0, resulting in

N−1∑
x=0

Qn(x; 0, 0,N) Qm(x; 0, 0,N) =
N

πn(0, 0,N)
δmn,

(34)

As the second step toward obtaining the explicit solu-
tion, the power moment conditions (24) are expressed in
terms of the Hahn polynomials. This is possible since for
a given M ≤ N − 1, which is the degree of the polynomi-
als passed without error, the Hahn polynomials provide an
independant set of M + 1 polynomials that may be used to
express any given monomial of degree at most M. In other
words, there exist coefficients cl so that

x j =

j∑
l=0

cl Ql(x, α, β,N), j = 0, 1, . . . ,M. (35)

On applying this representation to (24), we obtain



1516
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.8 AUGUST 2007

j∑
l=0

cl

N−1∑
i=0

hi Ql(i, α, β,N)

= (−1)m
j∑

l=0

cl Q(m)
l (p, α, β,N),

j = 0, 1, . . . ,M, (36)

where Q(m)
l (p, α, β,N) denots the mth derivative of

Ql(p, α, β,N) with respect to p. Thus, We can equivalently
write

N−1∑
i=0

hi Qj(i, α, β,N) = (−1)mQ(m)
j (p, α, β,N),

j = 0, 1, . . . ,M. (37)

As the last step toward obtaining the explicit solution,
following [12], we employ the method of Lagrange multi-
pliers. It can be shown that the mimization of NG is accom-
plished if the coefficients hi are polynomials in i of degree
M. At this point, we use the Hahn polynomials once again
but this time in order to express the impulse response coef-
ficients in the form

hi =

M∑
l=0

λl Ql(i, α, β,N), i = 0, 1, . . . ,N − 1. (38)

The problem reduces to that of determining the (M + 1) un-
knowns λl. Substituting (38) into (37), we find that

M∑
l=0

λl

N−1∑
i=0

Ql(i, α, β,N) Qj(i, α, β,N)

= (−1)mQ(m)
j (p, α, β,N),

j = 0, 1, . . . ,M.

(39)

By (34), it follows that for α = β = 0, we have

λl =
(−1)m

N
πl(0, 0,N)Q(m)

l (p, 0, 0,N),

l = 0, 1, . . . ,M.
(40)

Hence, the impulse response coefficients of an FIR system
of length N that produces the exact values of the mth deriva-
tive of a polynomial input of degree M, after a delay of p
samples, and has a minimum white noise gain is given by

hi =

M∑
l=0

(−1)m

N
πl(0, 0,N) Ql(i, 0, 0,N)

× Q(m)
l (p, 0, 0,N), i = 0, 1, . . . ,N − 1. (41)

Shown in Fig. 2(a) is the magnitude of the frequency
response for a predictive smoother of length N = 20, pro-
ducing a delay of p = 9.5 samples for the polynomial com-
ponents of degree M = 4. Also, the four possible differ-
entiators for the polynomials of degree 4, corresponding to
m = 1, 2, 3, 4 are shown in Fig. 2(b).

(a)

(b)

Fig. 2 Magnitude of the frequency response for (a) a predictive smoother
p = 9.5,M = 4,N = 20, and four possible differentiators (b) p = 9.5,M =
4,N = 20,m = 1, 2, 3, 4. The systems are all exact for polynomial compo-
nents of degree four.

4. Development of Recursive Structures Using Ratio-
nal Form of Transfer Functions

The results given in the preceding section indicate that the
transfer function of the systems of our interest, like that of
all other systems with a polynomial impulse response, is in
fact a linear combination of the z-transforms of monomials
nk given by

N−1∑
k=0

nkz−n. (42)

Although we know that such polynomial impulse responses
can be implemented recursively to reduce the computational
complexity [13], [20], there is no systematic method for the
derivation of the rational transfer function that is realized by
such recursive structures. The purpose of this section is to
introduce an explicit and systematic method for the deriva-
tion of the rational transfer functions for the realization of
polynomial impulse responses.

A procedure for obtaining a closed-form formula
for (42) when there are infinitely many terms is given in
[21]. It was later remarked in [22] that this method involves
the computation of the so-called Eulerian polynomials

Am(z) =
m−1∑
j=0

〈
m
j

〉
z− j, m = 1, 2, . . .

A0(z) = 1

(43)
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where the coefficients
〈

m
j

〉
, called the Eulerian numbers, can

be computed using the recurrence [17]
〈
m
j

〉
= ( j + 1)

〈
m − 1

j

〉
+ (m − j)

〈
m − 1
j − 1

〉
. (44)

The recurrence and its initial conditions result in a triangle
of integers whose first few rows are of the form

〈
m
0

〉 〈
m
1

〉 〈
m
2

〉 〈
m
3

〉 〈
m
4

〉
m = 0 1
m = 1 1 0
m = 2 1 1 0
m = 3 1 4 1 0
m = 4 1 11 11 1 0

(45)

Using the Eulerian polynomials, the infinite-length version
of (42) is evaluated as

∞∑
n=0

nkz−n =
z−1Ak(z)

(1 − z−1)k+1
. (46)

The above formula, although very simple and effective, can-
not be applied directly to our filters. We need to compute the
z-transform of the truncated version of the above formula in
an explicit manner. Such a formula exists and can be written
as

L∑
n=0

nkz−n =
QL+1(z−1; k)
(1 − z−1)k+1

, (47)

where QL+1(z−1; k) is a member of a family of polynomials
whose coefficients depend on L and k. For a fixed L, the first
few entries are

QL+1(z−1; 0) = 1 − z−L−1

QL+1(z−1; 1) = z−1 − (L + 1)z−L−1 + Lz−L−2

QL+1(z−1; 2) = z−1 + z−2 − (L + 1)2z−L−1

+(2L2 + 2L − 1)z−L−2 − L2z−L−3 (48)

For a recursive evaluation of the numerator the recurrence
[23],

QL+1(z−1; k + 1) = z−1
(
(1 − z−1)

dQL+1(x; k)
dx

|x=z−1

+(k + 1)QL+1(z−1; k)
)
,

k = 1, 2, . . . (49)

can be used. The formula is in fact the transfer function
of the structures of [20] and [13] when they are tailored to
generate a simple monomial.

5. Conclusion

The Hahn orthogonal polynomials have been used to ex-
press the conditions for exact polynomial processing and
to express the impulse response coefficients hi. The result
is a concise and explicit formula for hi expressed by the

Hahn polynomials with variable is i and parameterized by
the delay parameter, the order of differentiation, the degree
of the polynomial component in the input signal, and the
length of the filter. The resulting family of filter integrates
the Savitzky-Golay filters as well as other existing predic-
tive FIR smoothers and differentiators under a unified for-
mula. Since the coefficients hi are polynomials in i, the re-
lated problem of recursive implementation of a polynomial
impulse response has been discussed and a closed-form ex-
pression for the related rational transfer functions has been
introduced.

If it is desired to obtain the numerical values of the
impulse response coefficients, one needs to evaluate Hahn
polynomials and their derivatives at integer or possibly non-
integer arguments. This task may be performed directly us-
ing the hypergeometric series given by (30). The series may
be used in a direct manner to find the value of the Hahn
polynomial and its derivative at a given argument. Another
possibility is to use the recurrence relations of Weber and
Erdélyi for Hahn polynomials [18], [19]. In that case, care
must be taken with respect to the applicability of the re-
currence relation for certain values of the arguments. The
recurrence must also be adapted to a form suitable for the
evaluation of the derivatives.
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[20] T. Saramäki and O. Vainio, “Structures for generating polynomial re-
sponses,” Proc. 37th Midwest Symposium on Circuits and Systems,
vol.2, pp.1315–1318, 1994.

[21] H. Abed, “On the evaluation of
∑∞

n=0 nk xn with applications to Z
transforms,” IEEE Trans. Autom. Control, vol.17, no.6, pp.835–836,
1972.

[22] D. Smith, “Further comments on “On the evaluation of
∑∞

n=0 nk xn

with applications to Z transforms,” IEEE Trans. Autom. Control,
vol.22, p.993, 1977.

[23] N. Gauthier, “Derivation of a formula for
∑

rk xr ,” Fibonacci Quart.,
vol.27, pp.402–408, 1989.

Saed Samadi was born in Tehran, Iran,
and received the B.E., M.E., and Ph.D. degrees
in physical electronics from Tokyo Institute of
Technology, Tokyo, Japan, in 1989, 1991 and
1994, respectively. He has held academic po-
sitions at K.N. Toosi University of Technol-
ogy, Tehran, Iran, the University of Electro-
Communications, Tokyo, Japan, and Shibaura
Institute of Technology, Tokyo, Japan. Cur-
rently, he is with the Department of Electrical
and Computer Engineering, Concordia Univer-

sity, Montreal, QC, Canada. His research interests include digital signal
processing and evolutionary design of circuits and systems. His papers
have been published mainly by IEICE and IEEE.

Akinori Nishihara received the B.E., M.E.
and Dr. Eng. degrees in electronics from Tokyo
Institute of Technology in 1973, 1975 and 1978,
respectively. Since 1978 he has been with Tokyo
Institute of Technology, where he is now Profes-
sor of the Center for Research and Development
of Educational Technology. His main research
interests are in one- and multi-dimensional sig-
nal processing, and its application to educational
technology. He served as an Associate Editor
of the IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences from 1990 to 1994,
and then an Associate Editor of the Transactions of IEICE Part A (in
Japanese) from 1994 to 1998. He was an Associate Editor of the IEEE
Transactions on Circuits and Systems II from 1996 to 1997 and Editor-in-
Chief of Transactions of IEICE Part A (in Japanese) from 1998 to 2000.
He has been serving in IEEE Region 10 Executive Committee in various
positions. He was a member of the Board of Governors, IEEE Circuits
and Systems Society (2004–2005), and is Chair of IEEE Circuits and Sys-
tems Society Japan Chapter. He served as Chair of the IEICE Technical
Group on Circuits and Systems from 1997 to 1998, and since 1998 he has
been serving as an Adviser of that Technical Group. He received Best Pa-
per Awards of the IEEE Asia Pacific Conference on Circuits and Systems
in 1994 and 2000, a Best Paper Award of the IEICE in 1999, and IEEE
Third Millennium Medal in 2000. He also received a Distinguished Service
Award for IEEE Student Activities in 2006. Prof. Nishihara is a Fellow of
IEEE, and a member of EURASIP, European Circuits Society, and Japan
Society for Educational Technology.


