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|PAPER _Special Section on Discrete Mathematics and Its Applications

Computational Complexity Analysis

of Set-Bin-Packing Problem*

Tomonori IZUMI', Toshihiko YOKOMARUT', Atsushi TAKAHASHI!,

SUMMARY The packing problem is to pack given items into
given containers as efficiently as possible under various con-
straints. It is fundamental and significant with variations and
applications. The Set-Bin-Packing (SBP) is a class of packing
problems: Pack given items into as few bins which have the same
capacity where every item is a set and a bin can contain items as
long as the number of distinct elements in the union of the items
equals to or less than the capacity. Omne of applications is in
FPGA technology mapping, which is our initial motivation. In
this paper, the computational complexity of SBP is studied with
respect to three parameters «, v, and § which are the capacity,
the upper bound of the number of elements in an item, and the
upper bound of the number of items having an element, respec-
tively. In contrast that the well known Integer-Bin-Packing (IBP)
is NP-hard but is proved that even a simplest heuristics First-Fit-
Decreasing (FFD) outputs exact solutions as long as o £ 6, our
result reveals that SBP remains NP-hard for a small values of
these parameters. The results are summarized on a 3D map of
computational complexities with respect to these three parame-
ters.

key words: bin-packing, complexity, technology mapping, FPGA

1. Introduction

The packing problem is to pack given items into given
containers as efficiently as possible under various con-
straints. Since it is fundamental and significant with
variations and applications, there have been many re-
searches including computational complexity analysis
and development of exact/approximate/heuristic algo-
rithms[1]. The Bin-Packing is a class of packing prob-
lems: Pack a given set of items each of which has its
own size into as few bins which have the same capacity.

One of applications of Bin-Packing is found in
VLSI circuit clustering (or partitioning, technology
mapping).Traditionally, the main concern has been in
the area where the area of a gate (or a cell, a mod-
ule) corresponds to the size of an item and the area of
clusters (or blocks) corresponds to the capacity of bins.
Recent increase of the density of circuit elements causes
“pin-crisis” because the number of terminals placed at
periphery of a layout area is approximately propor-
tional to only the square-root of the density. In a spe-
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cific programmable devices such as Field Programmable
Gate Arrays (FPGAs), the number of terminals is one
of the most critical constraints for realizability. The
number of terminals needed for gates in a cluster may
be less than the sum of the numbers of the terminals
of the gates because one common signal connected to
multiple gates occupies only one terminal in going out-
side. From this set-theoretic property of the terminals
contrast to the algebraic one of the areas, the Set-Bin-
Packing (SBP) is abstracted where every item is a set
and a bin can contain items as long as the number of
distinct elements in the union of the items equals to or
less than the capacity,

A realistic application of SBP is in the technology
mapping of gates into Look-Up Tables (LUTs) of an
FPGA[2],[3]. An LUT has fixed number « of input
terminals and an output terminal, called the a-input
LUT, and any logic circuit with « or less input signals
and with an output signal is able to be implemented in
an a-input LUT. For example, four AND-gates in Fig. 1
(above) are packed into two 5-input LUTs as shown in
Fig.1 (below). In the following, we discuss on SBP
using the terms in technology mapping, such as ‘gate,’
‘signal,” and ‘LUT,” for the sake of practical image.

If there are no common signals, or if the advan-
tage of common signals are ignored, SBP is reduced to
Integer-Bin-Packing (IBP)[4]-{7] where the size of ev-

Fig. 1 An example of mapping: Four gates are mapped into
two S-input LUTs.
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ery item is an integer that follows conventional algebra.
Although IBP has been known NP-hard, it is not only
known to be polynomial time solvable when the capac-
ity of bins is fixed [8] but also was proved recently[9]
that a very simple algorithm First Fit Decreasing (FFD)
outputs an exact solution if the capacity « is 6 or less,
which is large enough in technology mapping.

Motivated by these circumstances, this paper is to
analyze SBP from computational complexity. Let v and
& be the upper bound of the number of input signals of
a gate and the upper bound of the number § of fanout
gates of a signal (gates which has the same input signal).
Although SBP is NP-hard in general, it is expected that
SBP might have polynomial time algorithms when the
parameters «, v and § are small values.

In this paper, the computational complexity of SBP
with respect to these parameters is discussed and we de-
termined for almost all the cases if SBP is NP-hard or
polynomial time solvable. As opposed to our expecta-
tion, SBP remains mostly hard even within the small
range.

The rest of this paper is organized as follows.
The definition of SBP and preliminaries are presented
in Sect.2. In Sect.3, our results are summarized in
the 3-dimensional map of the computational complex-
ities of SBP(«,~,8). Our main theorems on the NP-
completeness and polynomial time solvability are in
Sects. 4 and 5, respectively. Readers who only need to
know the result can skip Sects.4 and 5. Section 6 con-
cludes the work.

2. Preliminaries

Let S = {s1,82,...,8ns} be a set of signals and G =
{91,92,.-.,9ng} be a set of logic gates. A set of input
signals of a gate g is denoted by input(g). The size of a
gate g is defined as |input(g)| and denoted simply by |g|.
The set of gates which has an input signal s is referred
to as the fanout gates of s and denoted by fanout(s).
The fanout of a signal s is defined as |fanout(s)| and
denoted simply by |[s|. Let II = {my,m9,...,m3} be
a partition of G into clusters 7;’s, that is, m; C G for
1<i< B, mnm; =0 fori =+ j, and Ulgigﬁwi = G.
The set of input signals of a cluster 7 is defined as
input(m) = Ugerinput(g). The size of a cluster 7 is
defined as |input(w)|. An -cluster is a cluster whose
size is ¢ or less. The number o of input terminals of
LUTs is referred to as the capacity of LUTs. A cluster
7w must be an a-cluster to be mapped into an a-input
LUT. Set-Bin-Packing is defined as follows.

Set-Bin-Packing (SBP)

Instance: A set S of signals, a set G of gates, the ca-
pacity o of LUTs, and the number 3 of LUTs.

Question: Is there any partition II of G into 8 or less
a-clusters?
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sl s2 s3 s4 sb s6 s7

Fig.2 The diagram consisting of signals and gates (above) and
the hyper-graph representing it (below).

SBP is known to be NP-complete in general [2].
We consider SBP with limitations as follows.

1. The capacity of LUTs is a.
2. The size of every gates is at most ~.
3. The fanout of every signal is at most §.

These parameters are constants (not input values). SBP
with respect to parameters «, v, and é is denoted by
SBP(a,,6).

If there exists a pair of gates g and ¢’ such that
input(g’) Cinput(g), they can be mapped in the same
LUT without increasing the number of LUTs. There-
fore, we assume that there is no such pair of gates. If
there exists a gate g such that |g| > «, there is no parti-
tion into a-clusters. Therefore, we assume that there is
no such gate, that is, v < «.

For convenience, we introduce a hyper-graph to ex-
press the relation between signals and gates. A gate is
represented by hyper-edge connecting the vertices which
correspond to the input signals of the gate. For exam-
ple, the circuit shown in Fig.2 (above) is represented
by the hyper-graph in Fig.2 (below). Hereinafter, we
omit the word ‘hyper’ for simplicity. A set of gates is
said to be connected if there is a sequence for any pair
of gates which connects them such that two consecutive
gates in the sequence have a common signal. A path
is a sequence of distinct gates such that two consecutive
gates have exactly one common signal and such com-
mon signals are distinct each other. A cycle is a closed
path. The length of a path (cycle) is the number of gates
contained in the sequence.

3. 3D Map of Computational Complexities

Before the detailed discussion on the computational
complexity of SBP, we present the 3D map with respect
to «, v, and § as shown in Fig.3. It summarizes our
results. The map consists of three planes correspond-
ing to § = 1 (above), § = 2 (bottom-left), and § = 3
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Fig. 3 3D map of the computational complexities of SBP
(o, v, 6).

(bottom-right). Each area specified by («,~,6) is la-
beled ‘P, ‘NP-c,; or ‘v indicating that the computa-
tional complexity of SBP(«,~,§) is polynomial time
solvable, NP-complete, or unknown, respectively.

SBP(«, 1,6) is trivially solved for any o and §.
Thus, the areas (o, 1, 6) is labeled P.

The label of an area SBP(,y, §) such that v = «
is same as the label of the area SBP(a,y —1,6). This
is by the following property: Let Ispp = (S, G, 3) be
an instance of SBP(a,~,8) where v = o and G’ be a
set of gates of size o in G; The answers for Igpp and
for (S,G\G', B —|G'|) are the same.

For the remained areas labeled ‘NP-¢’ or ‘P,” theo-
rems are presented in Sect.4 or Sect. 5, respectively.

4. NP-Completeness

We present two theorems on NP-completeness of SBP in
this section. For polynomial reductions in the proofs,
we introduce the problem called Exact Cover by k-Sets.
Let X be a set. A k-set on X is a subset of X with
exactly k elements. An exact cover of X by k-sets is
a set A of k-sets such that every element of X occurs
in exactly one member of A. Exact Cover by k-Sets is
defined as follows.

Exact Cover by k-Sets (XkC)

Instance: A set X and a set C of k-sets on X where
|X| = kq and g is a positive integer.
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Question: Does C contain an exact cover of X?

Note that the number k is fixed (not an input value).
Example 1: Let X = {x,%2,%3,%4,25,%6} and
C = {c1,c2,¢c3,ca) where 1 = {z1,23,23}, ¢z =
{@1, 24, T6}, €3 = {@1, 25,76}, and ¢4 = {z4, 25,26}
Ixc = (X,C) is an instance of X3C. The answer for
the question is ‘yes’ since C' contains an exact cover
A= {Cla 04}'

XkC is known to be NP-complete for & = 3{10].

4.1 The Caseof >3, v=>2,and 6§ =3

Lemma 1: SBP(«,2,3) is NP-complete for o 2 3.

Proof: It is easy to see that SBP is in NP. We re-
duce XkC of k = a to SBP(a, 2,3). Let Ixc = (X,C)
be an instance of XkC where X = {z1,z2,...,Zkq}>
C = {ci,ca,...,¢p}, |X| = kq, and |C| = p. The set
of k-sets containing z is denoted by p(z). The cardi-
nality of p(x) is denoted simply by |z|. The ¢-th k-set
of 2 is ¢; € u(x) such that [{c;: ¢; € p(z),j<i}| = L.
Similarly, the £-th element of ¢, is z; € ¢ such that |{z;:
z; € ¢,j <} = £ If jzg| < 1 for some z € X, Ixc
has no exact cover and we immediately generate some
SBP instance with no partition into § or less a-clusters.
We assume |z| = 1 for all z € X in the following. The
assumption implies p = g.

We construct an instance Isgp of SBP(«, 2, 3) such
that G has a partition into 3 or less a-clusters if and
only if Ixc has an exact cover. The construction
will be made up of several components. An element-
component of x € X consists of a set Sy(x) = {s1(z,1):
1 <4 < |z|} of signals and a set Gi(z) = {g1(z,9):
1 <4 < |z| -1} of gates such that input(g;(x,3)) is
{s1(z,1),s1(z,7 + 1)}. A set-component of ¢ € C' con-
sists of a set Sz(c) = {sa2(c,i): 1 <i <k} of signals
and a set Ga(c) = {g2(c,i): 1 < ¢ < k} of gates such
that input(ga(c, 1)) is {sa2(c, 1), s2(c, (¢ mod k) +1)}. For
each pair of an element z € X and a k-set ¢ € C such
that z € ¢, a connecting-component between ¢ € C
and z € c consists of a set S3(z,c) = {ss(z,c,£):
1</<k—3} of signals and a set G3(z,c) = {g3(z, ¢, {):
1< 0L k—2} of gates. Let ¢ be the i-th k-set of = and
2 be the j-th element of c. If k > 3, input(gs(z,c, £)) is
{s1(z,1), 53(z,c,£)} if £ =1, or {s3(z, ¢, 1), s3(x, ¢, ) }
if1<f<k—2, or {s3(z,c, 1), s2(c,j)} if £ = k—2. Oth-
erwise (k = 3), input(gs(z,c,£)) is {si(z,1),s2(c, j)}-
Note that S3(z,c) is empty if k = 3.

Now, we have the whole circuit consisting of S =
UxEX Sl (QT) U UCEC 52(0) U UCEC,:EEC Sg(CE, C) and G =
Usex G1(2) UU e G2(6) U U e zee G(®, ). Table 1
summarizes the cardinality in various sets of gates. Note
that >+ |z| = kp. We set the number 3 of LUTs to
(k+1)p —q. Note that the size of every gate is two and
the degree of every signal is at most three. Now, we get
an instance of SBP(«,2,3), Isgp = (S, G, §). It is easy
to see that this construction is possible in polynomial
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Table 1 The number of gates.
set of gates  # gates | set of gates # gates
G1(z) |f—1 UGi(2) kp—kq
Ga(c) k U Galce) kp
G3(z, c) k—2 UGs(z,c) (k—2)kp
G k%p — kq

cl c2 c3 c4

Fig.4 The signals (vertices) and gates (edges) constructed from
the X3C instance. Element-components, set-components, and
connecting-components are drawn with solid, shaded, and dotted
lines, respectively.

TC{x,2) T (x,3)

Fig. 5 Examples of n(z, £)s where |z| = 4 and the third k-set ¢
of z is in A.

i

time. For example, the SBP instance constructed from
the XkC instance in Example 1 is shown in Fig.4.

We claim that Isgp has a partition of G into 3 or
less a-clusters if and only if Ixc has an exact cover.
Suppose that ACC is an exact cover for Ixc. For
each z € X, let ¢ be a k-set which covers x, that is,
c € AN p(z) Assume that ¢ is the i-th k-set of z and =
is the j-th element of c. We define a cluster n(z, ) of
gates for each 1</ <|x| as follows: Gs(x,c)U{g1(z,0)}
if 1 <2 <4, or Gs(z,d) U {ga(c, )} if £ = 4, or
Gs(z,d) U {g1(z,£ — 1)} if ¢ < £ < |z| where ¢/ is the
£-th k-set of z. The definition is illustrated in Fig.5.
Let 1T be {n(z,£): z € X,1<< x|} U {Ga(c): ¢ ¢ A}
The size of every cluster w(z,£) is o and the size of
every Ga(c) is . Sets in II are distinct each other.
The union of sets in II is G. Thus, II is a partition
of G into a-clusters. The number of clusters in II is
Yoeex 2|+ (p—q) = (k+1)p — ¢ = B. Thus, G has a
partition into 3 a-clusters.

Conversely, suppose that II is a partition of G into
B or less a-clusters. Let A = {c: Ga(c) ¢ II}. We claim
that A is an exact cover of X. Let A be C\A. Let X’ be
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a subset of X covered by A, that is, .., c. Let X’ be
X\X'. Since [X'| = |Ugepcl £ > ocen lel = k[A| and
X+ [X7] = |X] = kg,
X'
IAlzq—‘k|- (D

For each = € X/, let G'(z) be a set of gates
in the element-component of z and the connecting-
components incident to the component, that is, G1(z)U
Uecepu(z) Ga(®, c). Note that G'(z) has (a—1)|z|—1 gates.
Let Gi(z) be a set of gates in G'(x) such that a gate in
G} (z) is contained by an a-cluster in IT with 4 gates. By
the definition of Isgp,

e any a-cluster has at most o gates,

e an a-cluster m has « gates if and only if 7 = G2 (c)
for some ¢ € C,

e an a-cluster # has aa—1 gates if and only if 7 is
connected and 7 £ Ga(c) for any c € C.

Since set-components incident to G'(z) are a-clusters
in II, any a-cluster containing a gate in G,,_,(xz) for

x € X' consists of only gates of G’(z). The number of
such a-clusters is at most {%J =lz|-1. G,,_,()

has at most (a—1)(Jz|—1) gates. The number of gates
in G'(z) and in some a-cluster with oo — 2 or less gate
is |G/ (z)| — |GL,_1(z)] =2 a—2. Totally, the number of
gates contained in some a-cluster with a—2 or less gates
is at least | X'|(c — 2). The number of a-clusters with
a—2 or less gates is at least |X’/|. Let II, be a set of
a-clusters with i gates. We have

Gl =) illL]
i=1
a—2

< aflle| + (a=1)[Haa | + (@—2) Z ITL;|

= M| + (a=1)[T] = 1T
=1
< A+ (=1 - [X7| 2)

Upon substituting o = k, |II| < 8 = (k+ 1)p — g,
|G| = k?p — kq, and |A| =p — |A| for (2),

Al < q—[X]. 3)

Finally, from inequalities (1), (3), |[X'| = 0, |A| = 0,

and k > 3, we have |[X’| = 0 and |A| = q. These equa-

tions imply that A is an exact cover of Ixc. |
Lemma 1 leads the theorem.

Theorem 1: SBP(x,v,8) is NP-complete for o > 3,

v 2=2,and 6§ = 3.
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42 The Caseof > 6,y=>3,and 6 > 2

Lemma 2: SBP(«,3,2) is NP-complete where o = 2k
for k > 3.

Proof: Since this lemma is proved by the similar way
to Lemma 1, we only illustrate the construction of an
SBP(«, 3,2) instance from an XkC.

We construct SBP(«,3,2) instance which con-
sists of element-components, set-components, and
connecting-components. For example, the SBP in-
stance constructed from the XkC instance in Example 1
is shown in Fig.6. For each z € X, the element-
component of z is a path consisting of 2|z| — 1 gates
of size 3. For each ¢ € C, the set-component of ¢ is
a cycle consisting k gates of size 3. For each pair of
an element z € X and a k-set ¢ € C such that z € ¢,
the connecting-component between z and c is a path
consisting of £ — 2 gates. It connects between the sig-
nal of (2i — 1)-th gate in the element-component of z

<
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and the signal of the j-th gate in the element-component
of ¢ such that ¢ is i-th k-set of z, = is j-th element of
¢, and the signals are not common in the path or cy-
cle. The size of a gate in a connecting-component is
3 except that the (| %52 ] + 1)-th gate from the side of
an element-component is 2. The number § of LUTs is
(k+1)p—q.

We claim that there is a partition of G into 8 or
less a-clusters if and only if Ixc has an exact cover. A
key issue for the proof is that k-sets corresponding to
set-components each of which is a cluster in the parti-
tion are the complements of the exact cover. |
Lemma 3: SBP(«,3,2) is NP-complete where
2k+1fork =3
Proof: This lemma is also proved by the similar way
to Lemmas 2 and 1. We only describe the differences
from the construction in the proof of Lemma 2.

A connecting-component is a path consisting k£ — 2
gates of size 3 (not containing a gate of size 2). There

",
N o
™

",

Fig. 6 The signals and gates constructed from the X3C instance. Element-components,
set-components, and connecting-components are drawn with solid, shaded, and dotted

lines, respectively.

W??WWW

3

v,
o

0
o
o
!
o

O—e
P padding components

O—e
Fig. 7 The signals and gates constructed from the X3C instance. Element-components,
set-components, connecting-components, and padding-components are drawn with solid,
shaded, dotted, and thin lines, respectively.
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are padding-components each of which is a gate of size
1. The number of padding-components is p — q. A
padding-component together with a set-component of
k-set which is not in the exact cover forms an a-cluster
in II. For example, the SBP instance constructed from
the XkC instance in Example 1 is shown in Fig.7. O
Lemmas 2 and 3 lead the theorem.
Theorem 2: SBP(c,7,d) is NP-complete for o > 6,
v =3, and 6 = 2.

5. Polynomial Time Solvability

We present two theorems on polynomial time solvability
of SBP in this section.

5.1 The case of Vo, Vy, and § =1

First, we consider SBP(«,~y,1) which is equivalent to
IBP. Although it is already known that IBP is polyno-
mial time solvable when « is fixed, we present a proof
which is a base of the proof of Theorem 4 on the poly-
nomial time solvability of SBP(«,2,2).
Theorem 3: SBP(a,+,1) is polynomial time solvable
for any « and ~.
Proof: Let Isgp = (S,G,B) be an instance of
SBP(a,7v,1). A multi-set of non-negative integers
whose sum is « is called a divider of o. A set w of
gates is said to fit a divider d when the multi-set of gate
sizes in 7 is a subset of d. For example, {2,1,1,1} is a
divider for &« = 5 and m; = {¢1, g2, g5} where |g1| = 2,
lg2| = 1, and |g3| = 1 fits the divider. A multi-set a of
dividers such that |a| < 8 is called an accepter. A parti-
tion II of G into a-clusters is also said to fif an accepter
a when there exists a one-to-one mapping from II to a
such that every a-cluster in II fits the mapped divider.
An accepter ¢ is said to be feasible for G when there
exists a partition of G which fits a. Given an accepter
a, the feasibility of a can be checked by confirming if
the number of gates of size 7 is at most the total number
of integer “’s contained in dividers in the accepter for
each1 <i< .

The algorithm to solve SBP(«,~, 1) is described as
follows.

1. Epumerate the set D of all dividers of «.
2. Enumerate the set A of all accepters of a.

3. For every a € A, check the feasibility and answer
‘yes’ if @ is feasible.

4. Answer ‘no.” (no feasible accepter is found)

The times to enumerate D and A are O(«|D|) and
O(|D||Al), respectively. The time to check feasibility is
O(a|D|) for an accepter. The total time is O(a|D||A|).
Since |[D| < 2° 1 and |A| < (8 + 1)IP, the total com-
putational time for the algorithm is

847

O (a x 27 5 (B+ 1)2(%1) i

Since « is a fixed value, this is polynomial of the size
of the instance. |
The time complexity of the algorithm which works
for any « is a high order polynomial even if « is small.
However, faster algorithms exist for specified a.

Theorem{9]: The FFD algorithm solves IBP in
O(|G|log |G]) time for @ < 6.

Theorem[9]: The enhanced FFD algorithm in [9]
solves IBP in O(|G|log|Gl|) time for o < 8.

5.2 The case of Voo, y = 2, and 6 = 2

We consider SBP(«,2,2). An instance of SBP(«, 2, 2)
consists of only paths and cycles as shown in Fig.8. We
present two trivial facts as lemmas on the length of a
path and a cycle. The proofs are omitted.

Lemma 4: Let Isgp = (5,G,[) be an instance of
SBP(«, 2, 2) with a cycle (g1, g2, - - -, g¢) such that £ > a.
Let g, be a gate whose input signals are a signal s} not
contained in S and the common signal of g,—1 and g.
The answers for Isgp and for (S + si,G — g¢ + g5, 0)
are the same.

The lemma suggests that a cycle longer than « can

be cut open to form a path as pre-processing.
Lemma 5: Let Ispp = (5,G,[5) be an instance of
SBP(«,2,2) for &« < 7 with a path (g1,92,---,9¢)
such that £ > « — 1. The answers for Isgp and for
(S,G\{g91,92,---9a-1},3 — 1) are the same.

The lemma suggests that if there is a path longer
than o — 1, o — 1 gates from one end of the path can be
clustered as pre-processing for the case that o < 7.

Based on the approach in the proof of Theorem 3,
we have the following lemma.

Lemma 6: If the length of paths and cycles is bounded
by the constant, SBP(«, 2,2) is polynomial time solv-
able for any a.

Proof: Let Isgp = (S,G,[) be an instance of
SBP(a,2,2) and the bound of the length of paths and
cycles be 4. By Lemma 4, we assume that Isgp con-
sists of only paths of length 4. or less and cycles of
length o or less. As we do in the proof of Theorem

g8 g9 gio

Fig. 8 An instance of SBP(«,2,2). A shaded signal is the ori-
gin of a path or cycle. The direction is clockwize or left-to-right.
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3, we enumerate dividers and accepters and check the
feasibility for every accepter.

We introduce a label representing a sub-path of a
path or cycle. The direction of a path and the direction
and the origin of a cycle is decided arbitrarily. A label
Pe(i : j) represents the sub-path from i-th gate to j-th
gate of a path which consists of ¢ gates of size 2. A
label T represents a gate of size 1. A label Co(i : j)
represents the sub-path from ¢-th gate to j-th gate of a
cycle of length ¢. The size of a label is defined by the
number of signals in the sub-path. Table 2 summarizes
the range of parameters and the size of a sub-path.

A divider of a is defined by a multi-set of labels
such that the sum of sizes of labels in the multi-set is at
most . A set w of gates is said to fit a divider d when
the multi-set of labels representing sub-paths in 7 is a
subset of d. For example, a set of gates {g1, g2, 93,99}
shown in Fig.8 fits a divider {C5(1: 3),P3(2:2)}. Let
D be the set of all dividers of o. An accepter is defined
as same in the proof of Theorem 3. The function to
check the feasibility of an accepter is shown in Fig.9.
The framework of the algorithm is same as one in the
proof of Theorem 3.

The times to enumerate D and A are O(a|D|) and
O(|D||Al|), respectively. The time to check feasibility is
O(|G|Ba|D|) for a partitioning-candidate and repeated
for |A| < (8+1)!P! times. The total computational time
is

Table 2 The range of indices and the size of a sub-path.

range size
PZ<Z.7> 1§7’§]§‘€§Zmax ]_Z+2
T — 1
. . 6o i=1Aj=4
: <iLj5£¢L
Co(i:g) 3iLjstL {j—i+2---0.w.

Function Check-Feasibility;
Input an accepter a;

{
Label all gates ‘unaccepted’;
For each divider d € a, do {
For each label £ in d, do {

Find a sub-path represented by ¢
which consists of only unaccepted gates.

Label them ‘accepted’ if exists;

}
}

If all gates are accepted, answer ‘feasible’,

otherwise, answer ‘infeasible’;

}

Fig. 9 The function to check feasibility of an accepter.
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0 (a|Dl[G1B(5+1)1P1) .

Since |D| depends only on the constants o and fmax,
this is polynomial of the size of the instance. o
Lemmas 5 and 6 lead the following theorem.

Theorem 4: SBP(«,2,2) SBP(w,2,2) is polynomial
time solvable for o £ 7.

6. Conclusion

We analyzed the computational complexity of the Set-
Bin-Packing problem with limitations by capacity o of
LUTs, upper bound v of the gate size, and upper bound
6 of the fanout of signals. It is summarized in the
3D map. Our main results are Theorems 1, 2, and 4
whose contributions are to fill almost the area for § > 2.
However, the 3D map has not been completed remain-
ing some areas still open. Among them, SBP(4, 3, 3),
SBP(5,3,3), SBP(5,4,3) and SBP(«,2,2) for & > 8
are essential since SBP(4,4,3) and SBP(5,5,3) are re-
duced to SBP(4, 3,3) and SBP(5,4, 3), respectively. As
opposed to our initial expectation that SBP is solv-
able for small parameters, it was revealed that SBP is
mostly hard. The non-trivial solvable cases are only
SBP(«, 2,2) which may cover few practical cases.
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