TER2 ERIgALUS-FURI I

Tokyo Tech Research Repository

Jo /0000
Article / Book Information

Title Routability of FPGAs with Extremal Switch-Block Structures

Authors Yasuhiro Takashima, Atsushi Takahashi, Yoji Kajitani

Citation IEICE Trans. Fundamentals, Vol. E81-A, No. 5, pp. 850-856

Pub. date 1998, 5
Rt | wsewchieesow
Copignt | (c) 1998 nstute of Eleconcs,Information and Communicatin

Engineers

Powered by T2R2 (Tokyo Institute Research Repository)


http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

850

JEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 5 MAY 1998

|PAPER Special Section on Discrete Mathematics and Its Applications

Routability of FPGAs with Extremal Switch-Block

Structures

Yasuhiro TAKASHIMA', Nonmember, Atsushi TAKAHASHI', and Yoji KAJITANI', Members

SUMMARY The switch-block architecture of FPGAs is dis-
cussed to see a good balance between programmable-switch re-
sources and routability. For the purpose, FPGAs are assumed
to have certain extremal structures, whose switch-blocks consist
of parallel or complete switch-sets where a switch-set is a set
of switches between two sides of the switch-block. A polyno-
mial time detailed-routing algorithm for a given global-routing
is presented if the switch-block consists of two or less parallel
switch-sets or three that form a cycle. For other FPGAs, the
corresponding decision problem is proved to be N"P-complete.
A best compromise between switch resources and routability is
offered.

key words: FPGA, switch-block, routability, detailed-routing

1. Introduction

FPGAs are attracting popularity recent years as ad-
dressed from various aspects ([1] and elsewhere). With
limited resources for routing, researches of architectures
are to make them easier (1) to decide the routability of
a given global-routing and/or (2) to design a routable
global-routing.

There have been various considerations about
the architecture of FPGAs[2],[3],[5]-[8]. They in-
clude some proposals of architectures and architecture-
dependent strategies for global- and detailed-routing.
Their contributions are demonstrated by experiments, or
probabilistic considerations. Their considerations are
within certain trade-offs between routability and reduc-
tion of routing resources. Thus, it is concluded that they
are simply looking for a plausible compromise between
“extremes.” Therefore, studying FPGAs with some ex-
tremal architectures is essential for a profound under-
standing of roles of routing resources: programmable
switches and wire segments. Such results are found in
[3],[6], and [7]. In [3], the connection-block structure
which has the minimum switches to meet any connection
requirement is suggested. In [6] and [ 7], the routability
in relation to the number of switches is discussed when
the switch-blocks are of a certain structure.

This paper is a systematic study on the architecture
of regular FPGAs whose switch-blocks are specifically
extremal. All possible FPGAs of such extremal struc-
tures are listed and classified according to the struc-
tures. For each, the computational complexity of de-
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tailed routing for a given global routing is answered
and a best compromise is concluded which will be a
good principle in practical architecture design of FP-
GAs.

The rest of the paper is organized as follows. Af-
ter preliminaries (Sect. 2), our problems are defined and
main results are described in Sect. 3. In Sect. 4, a class of
FPGAs whose routability problems are A/P-complete
is provided. The proof of a lemma is left to Appendix.
In Sect. 5, a polynomial time detailed-routing algorithm
for the other classes of FPGAs is presented. Section 6
is the conclusion.

2. Preliminaries

Our FPGA model is a simplified one as shown in Fig. 1.

The structure of switch-blocks is assumed as fol-
lows (Fig.2): The switch-block has the same number
w of terminals on four sides: the left, top, right, and
bottom sides which are denoted by L, T, R, and B,
respectively. The terminals on each side are labeled as
1,2,...,w from the top (for L and R) and from the left
(for T and B). A programmable switch (simply a switch
hereinafter) in a switch-block is located between a ter-
minal on one side and that on another side. It connects
the end terminals if activated. The set of terminals on

Connection-Blocks
\ 2
[ Hh rrth

Logic-Blocks

N
NVJ
1
T

o
alaa BR3¢ VS

Switch-Blocks
Fig. 1 The FPGA model and a detailed routing.
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Fig. 2 An extremally structured switch-block composed of ei-
ther parallel or complete switch-sets. s(T, B), s(T, L), s(B.R):
parallel switch-sets. S(T, R), s(L, R), s(L, B): complete switch-~
sets.

side X (= L,T,R or B) is denoted by tx. The set of
switches between tx and ty is denoted by s(X,Y) and
called a switch-set.

A switch-set s(X,Y) is called complete if every pair
of a terminal on side X and that on Y has a switch,
that is, w? switches are implemented. While a switch-
set is called parallel if it comprises w switches connect-
ing the same labeled terminals (See Fig.2). They are
called the extremal switch-sets by the following sense:
For the complete switch-set, any addition of a switch
is not necessary for connection; For parallel switch-set,
any remove of a switch fails in connecting w terminals
on the sides concerned.

As the alternative of the parallel switch-set, it is
possible to consider the switch-set which is obtained
by removing switches or/and permuting the terminals
of the parallel switch-set. However, this paper neglects
such switch-sets since they would make the discussion
too complicated because of irregularity to give a simple
guide-line for practical design.

There are six switch-sets in a switch-block. A
switch-block is called an extremally structured switch-
block if each switch-set is either complete or parallel.
The variety of extremally structured switch-blocks is
26 = 64. An FPGA whose switch-blocks are all ex-
tremally structured is called the extremally structured
FPGA.

The FPGA considered in this paper is square con-
sisting of n X n switch-blocks. Moreover each switch-
block in the FPGA is square with w x w terminals and
extremally structured. If all the switch-blocks in the
FPGA are identical, the FPGA is said to be regular.
Unless otherwise stated, we focus on the regular FP-
GA:s.

The number of switches in a extremally structured
switch-block is ng = aw + (6 — a)w? = 6w? — a(w? —w)
where o is the number of parallel switch-sets of six
switch-sets. Note that n, is considered to represent the
amount of routing resources. It is expected that there is
a general trade-off between o and routability such that
the larger « is, the tighter the routability is.

The purpose of this paper is to get a definite idea
of such trade-offs in FPGAs of all 64 possible extremal
structures. A rough conclusion is that the minimum
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switch-block which keeps the routability problem in P
is the switch-block in which o = 3 such that three par-
allel switch-sets form a cycle. This is the architecture of
the FPGA which the authors are recommending.

3. Problem Definitions and Theorems

The structure of connection-block is assumed as follows:
Each connection-block has w wire segments which con-
nect the same labeled terminals on confronting sides
of adjacent switch-blocks. FEach wire segment in a
connection-block can be connected to any I/O termi-
nals on the incident logic-block. (See Fig.3.)

The global-routing is the set of requests to the
detailed-routing. For convenience to represent a global-
routing, we define a connection-switch graph.
Definition 1: Connection-Switch Graph (CS-graph)
The CS-graph of an FPGA is an undirected graph
which consists of the vertices corresponding the the
connection-blocks and the edges correspond to the
switch-sets.

By the model of the FPGA, the CS-graph is the
union of n? complete graphs. Each complete graph
corresponds to a switch-block and has four vertices
which correspond to the incident connection-blocks.
(See Fig.4.)

A global routing of a signal is a network for which
only terminals of logic-blocks, connection blocks, and
switch-blocks are assigned to pass but no particular wire
segments of the connection blocks nor switches of the
switch-blocks are specified. Therefore, it is defined on
the CS-graph.

Definition 2: Global-Routing

A global-routing of each signal is the set of connected
subgraphs of the CS-graph. Each subgraph is called a
request-graph and its edges are called request-edges.

Accordingly, the detailed-routing for each signal
selects a switch from the switch-set corresponding to
each request-edge. A network consisting of selected
switches and wires incident to the switches is called a
switch-net for the request-graph if the network is con-
nected in the connection-block corresponding to each
vertex of the request-graph.

Definition 3: Detailed-Routing

A detailed-routing is a set of switch-nets for given
global-routing such that no two distinct switch-nets con-
tain a common wire.

A global-routing is said to be feasible if there ex-
ists a corresponding detailed-routing or infeasible oth-
erwise. A global-routing consisting two request-graphs
is shown in Fig.5. This global-routing is feasible since
there is a detailed-routing as shown in Fig. 6.

We are concerned with the following problem.
Definition 4: Routability Problem

Instance: A global-routing.

Question: Is the global-routing feasible?
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Fig. 3 Adjacent switch-blocks and incident logic-blocks of a
connection-block.

switch-block

Fig. 4 The CS-graph of FPGA in Fig. 1.

Fig. 5 Request-graphs g1 and go.

Since a switch-set is either complete or parallel,
an FPGA is characterized only in terms of the paral-
lel switch-sets in a switch-block. Therefore, we classify
them into two classes by parallel switch-sets architecture.
Definition 5: Classes “Disc” and “Conn” of FPGAs
An extremally structured regular FPGA belongs to class
Disc if

1. the number of parallel switch-sets in a switch-block
is at most 2 (o £ 2), or

2. a = 3 and parallel switch-sets form a cycle in a
switch-block.

Class Conn is the set of other FPGAs, i.e. those
whose switch-blocks satisfy
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Fig. 6 Detailed-routings of g1 and ga.

1. « =24, or

2. « = 3 and parallel switch-sets do not form a cycle
in a switch-block.

An edge in the CS-graph corresponding to a par-
allel or complete switch-set is called a paraS-edge or
compS-edge, respectively. The paraS-edge subgraph of
a CS-graph is the graph obtained from the CS-graph by
deleting all compS-edges.

Lemma 1:

1. The paraS-edge subgraph of an FPGA of Disc is
disconnected.

2. The paraS-edge subgraph of an FPGA of Conn is
connected.

Proof:

1. Let the FPGA consist of p x g switch-blocks. As-
sume that 7" is a maximal tree of the paraS-edge
subgraph. Since it contains at most two paraS-
edges in the subgraph corresponding to a switch-
block, the number of edges of 1" is at most 2pgq.
While the number of vertices of the paraS-edge sub-
graph is 2pg + p + q. Therefore, 7' cannot be a
spanning tree.

2. Each four vertices corresponding to a switch-block
are connected in paraS-edge subgraph. Then it is
trivial that the paraS-edge subgraph itself is con-
nected.

Their names Conn and Disc come from this prop-
erty.

Main results are described in the following two the-
orems.
Theorem 1: For any FPGAs of Conn, the routability
problem is N'P-complete.
Theorem 2: For any FPGAs of Dise, the routability
problem is P.

Proofs for Theorem 1 and Theorem 2 are given in
Sects. 4 and 5, respectively.
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4. FPGAs of Conn

First, consider an FPGA with o = 3 such that parallel
switch-sets contain no cycle. There are four possible
distinct FPGAs taking symmetricity in consideration.

Type 1: s(T, L), s(T, )
Type 2: s(T, B), s(T, L), and s(T, R) are parallel.
Type 3: s(T, B), s(T,L), and s(B, R)
Type 4: s(T, B), s(L, R), and s(T, L) are parallel.

R), and s(B, L) are parallel.

are parallel.

In Fig.7, the paraS-edge subgraphs of Type I
through Type 4 are shown. Note that a common fea-
ture of these graphs is that each is lead to a grid graph
as shown Fig. 8 by shrinking edges enclosed by dotted
cycles in Fig. 7.

Consider a special request such that each request-
graph is a path consisting only of paraS-edges on these
grid graphs. Since each signal must use the same labeled
terminals and be disjoint from others, the routability
problem for such an input is the problem: Determine if
it is possible to assign those paths using w labels such
that any two paths that share a vertex have distinct la-
bels. This is the problem: Grid-paths w-colorability,
which will be formally defined and proved to be N'P-
complete in Appendix.

Second, consider an FPGA with oo = 4. It is easy
to see that each paraS-edge subgraph contains a sub-
graph which is either one of paraS-edge subgraphs of
Type 1 through Type 4. Therefore, if we consider the
request whose request-graphs are defined only on these
edges, the problem contains the cases of & = 3, thus
NP-complete. Similarly, since the cases of @ = 5 or 6
contain those of « = 4, the problems of those cases are
NP-complete as well.

Thus we conclude that the Routability Problem for
FPGAs of Conn is N"P-complete, and hence Theorem 1
has been proved.

Type 2 Type 3
Fig. 7 ParaS-edge subgraphs.
Type 1 Type 2 Type 4

Fig. 8 Shrunk paraS-edge subgraphs to grids.
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5. FPGAs of Disc

We provide a linear time detailed-routing algorithm for
the FPGAs of Disc.

Assume that a switch is selected from the switch-
set corresponding to an a request-edge on the way of
detailed-routing. Then, in the connection-block corre-
sponding to its end vertex, a wire segment is determined
used for the switch-net. Such a request-edge and its end
vertices are said to be fixed. An unfixed edge incident
to a fixed vertex is said to be forced by the vertex since
the choice of a switch of the switch-block in order to
form a switch-net is restricted.

Assume that there exists a forced paraS-edge in a
request graph. If only one end vertex of the paraS-edge
is fixed, the unique switch in the corresponding switch-
set to be selected is specified in order to construct a
switch-net for the request graph. While, if both end
vertices are fixed to different labeled wire segments, it is
impossible to select a switch to construct a switch-net
for the request graph.

On. the other hand, assume that there exists a forced
compS-edge in a request graph. A switch can be selected
even if two end vertices are fixed to different labeled
wires.

Lemma 2: For an FPGA of Disc, a global-routing is
feasible if and only if the following two conditions are
satisfied:

Vertex-cap: For each vertex in CS-graph, there exist at
most w request graphs that contain the vertex.

Cycle-cap: For each paraS-edge cycle in CS-graph,
there exist at most w request graphs each of which
contains at least one edge in the cycle.

Proof: The necessity of condition vertex-cap is triv-
ial because a connection-block can convey at most w
distinct signals.

The necessity of condition cycle-cap is shown as
follows. The length of a paraS-edge cycle is three.
Therefore, if a request graph contains an edge of a cycle
¢, it means that a switch is used by the corresponding
signal. The switch is connected to other two switches
such that they together correspond.to c. Therefore, three
switches are occupied by one signal. While, the number
of switches corresponding to ¢ is 3w. Therefore, at most
w request-graphs exist.

The sufficiency will be proved by the algorithm in
Fig.9. Step 1 checks if these two conditions are satisfied.
In Steps 3 and 4, detailed-routing is constructed.

It is possible to select the switch for each fixed
paraS-edge, since only one end vertex is fixed. It is
possible to select the switch for the other paraS-edge,
since given global-routing satisfies cycle-cap.

On the other hand, it is possible to select the switch
for each forced compS-edge, since there must exist the
switch connecting to the fixed end vertex. It is possible
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Algorithm: detailed-route
Input: A set of request-graphs

1. Return “the global-routing is infeasible” if either
of conditions vertex-cap or cycle-cap is vio-
lated.

2. Give the priority to the switch-blocks from the
top and then from the left (row-by-row).

3. For each switch-block according to the priority,
select a switch from the parallel switch-sets in
the switch-block as follows.

o For each forced paraS-edge of request
graphs contained in the switch-block, select
the switch from the corresponding switch-
set such that the switch is connecting to the
wire where the end vertex are fixed.

o For other paraS-edge of request graphs con-
tained in the switch-block, select a switch
from the corresponding switch-set such that
the switch connects the wires where a vertex
of the other request-graph is not fixed.

4. For each compS-edge of request graphs, select
a switch from the corresponding switch-set such
that the switch connects the wires where the end
vertex is fixed if the end vertex is fixed, or where
a vertex of the other request-graph is not fixed
otherwise.

Fig. 9 Detailed-routing algorithm.

to select the switch for other compS-edges, since given
global-routing satisfies vertex-cap.

It is evident that the time complexity to test the
two conditions is linear to the number of request edges.
Hence, the algorithm works in linear time of the number
of request-edges. Thus we conclude that the Routability
Problem for the class Disc is P, and Theorem 2 follows.

Note that the proof of the sufficiency uses only the
fact that the length of the cycle consisting of paraS-
edge is three and priority ordering in Step 2. There-
fore Lemma 1 is extended to the theorem on general
extremally structured FPGAs.

Theorem 3: For an extremally structured FPGA
which is not necessarily regular, its routability prob-
lem is P if the length of any paraS-edge cycle of the
CS-graph is at most 3.

Proof: We modify the priority ordering (Step 2). For
the purpose, we first define graph H as follows: A ver-
tex corresponds to the switch-block which contains at
least one paraS-edge. There exists an edge between two
vertices if the corresponding switch-blocks are adjacent
and the terminals of parallel switch-sets of these switch-
blocks are connected by wire segments. Second, order
the vertices of H by Depth First Search starting with
any vertex. Finally, give the priority ordering arbitrary
to all the switch-blocks keeping the order given to the
switch-blocks that contain parallel switch-sets.

H does not contain cycles because H is bipartite.
So, there is no paraS-edge whose end vertices are fixed
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to different labeled terminals. Therefore, the detailed-
routing algorithm with this modified priority ordering
works.

6. Concluding Remarks

The architecture of practical FPGAs are very much so-
phisticated adopting the knowledges of expert’s experi-
ences and careful experiments. Still, theoretical aspects
are important for further improvements to see reasons
why such architectures have come out. Such a study
often sets environmental restrictions to extremes. Our
study is in this direction and the “rule of thumb” we
obtained is useful: Three parallel switch-sets forming a
cycle in each switch-block of regular FPGAs (#riangle
FPGA) is a good compromise between the routability
and the switch resources.

In [7], Greedy Routing Architecture, called GRA,
is provided. For FPGAs which consists of GRA switch-
blocks, a global-routing is feasible if and only if only
vertex-cap is satisfied. And there are 3.5w? + 2w
switches in a switch-block. On the other hand, for our
triangle FPGA, a global-routing is feasible if and only
if vertex-cap and another condition, cycle-cap are sat-
isfied. However, there are 3w?+ 3w switches in a switch-
block. So we can decrease the number of switches in a
switch-block, adding simple condition, eycle-cap.

The future works are the study of trade-offs found
in non-extremally structured FPGAs.
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Appendix: NP-completeness of
k-colorability

Grid-paths

Draw a circle on a plane. A straight line inside the cir-
cle whose endpoints are on the circle is called a chord.
Let C be a set of n chords such that the endpoints of two
chords are distinct. An assignment of colors to chords
is called a coloring if no two chords that intersect on
the plane are assigned the same color. A coloring using
k colors is called a k-coloring.

Definition 6: Circle-chords k-colorability

Instance: Set C of chords, positive integer k.

Question: Is C k-colorable, i.e., does there exist a func-
tion f:C — {1,2,...,k} such that f(a) = f(b)
(a,b € C) whenever two chords a and b intersect?

It is known that this problem is N'P-complete [4].
Definition 7: Grid-paths k-colorability

Instance: Set P of paths on a grid, positive integer k.

Question: Is P k-colorable, i.e., does there exist a func-
tion g:P — {1,2,...,k} such that g(p) + g(¢)
(p,q € P) whenever two paths p and ¢ share a
grid point?

The objective is to prove that Grid-paths k-
colorability is N'P-complete. We provide a polyno-
mial time reduction of Circle-chords k-colorability to
the problem.

Let C be a chord set. By assigning labels
1,2,...,2n to endpoints of chords clockwise along the
circle, a chord is denoted by an ordered pair of labels of
its endpoints as (4, 7) where ¢ < j. A chord (¢, ) in C is
said to be minimal in C if there is no chord (z,y) € C
such that 4 < z < y < j. Similarly, a chord (z,5) € C is
maximal in C if there is no chord (z,y) € T such that
T < 1< j <wy. Classify all chords into five classes:

Cr ={(i,5)li,j = n};

C.={(, )i >ni+3j<2n+1}
Co={(i,j)li+Jj=2n+1}
Cr={(NiLn,i+j>2n+1}

Cp = {(i,5)|é,5 > n}.

We are going to construct a path set P on a grid G

of size |C| x |C| which will satisfy the following prop-
erties.

1. The grid points on the top row and bottom row are

855

assigned consecutively with labels 1,2,...,n and
2n,2n—1,...,n+1, both from the left, respectively.

2. A path corresponding to a chord (%,5) € C con-
nects points labeled ¢ and j.

3. Two paths corresponding to chords (%, j) and (p, q)
intersect if and only if (4,) and (p, ¢) intersect.

A procedure to construct such P is described in the
following.

1. Find the chord set C; which consists of all min-
imal chords in Cr. For each chord (¢,7) in Cy,
construct a path in the grid to connect the points
labeled 7 and j in the top row. Then, delete C;
from Cr. Find the chord set Cy which consists of
all minimal chords in the resultant Cv. For each
chord in Cj construct a path using two columns
and the second row. Continue the process until
Cr is exhausted. Next take C_ and continue the
same process but using a row which is next to the
preceding row, until to exhaust C_.

2. Construct paths corresponding to Cp by straight
vertical lines.

3. Then take the C; and Cp. Continue the similar
process but finding the chord set which consists of
all maximal chords.

It is trivial that P satisfies property 1 and 2. We
show that P satisfies the property 3. It is trivial that
if two chords intersect, the corresponding paths share a
point.

Next consider two chords (¢, 7) and (p, q) which do
not intersect. Assume that both belong to Cr. If j < p,
it is trivial that the paths do not intersect by construc-
tion. Otherwise, we assume without loss of generality
that ¢ < p and g < j. The horizontal segment of the
path (p, q) is above that of (z,7) by construction. Thus,
these two paths do not share a grid point.

Other cases can be verified analogously.

Thus, a solution for the problem Grid-paths k-
colorability is a solution of the problem Circle-chords
k-colorability. This completes the proof of Grid-paths
k-colorability being AN'P-complete.
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