[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

Od/dodn
Article / Book Information

Title MARK-OPT: A Concurrency Control Protocol for Parallel B-Tree
Structures to Reduce the Cost of SMOs

Authors Tomohiro YOSHIHARA, Dai KOBAYASHI, HARUO YOKOTA
0 O / Citation IEICE TRANS.INF.& SYST, Vol. E9Q0-D, No. 8, pp. 1213-1224
000 /Pub. date 2007, 8
R | oo

0000 /Copyright OO0000000000000O0DO0DOO0ODOOooOgn
Copyright (c) 2007 Institute of Electronics, Information and
Communication Engineers.

Powered by T2R2 (Science Tokyo Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.8 AUGUST 2007

1213

[PAPER

MARK-OPT: A Concurrency Control Protocol for Parallel B-Tree
Structures to Reduce the Cost of SMOs*

Tomohiro YOSHIHARA ™, Dai KOBAYASHI"f, Nonmembers,

SUMMARY In this paper, we propose a new concurrency control pro-
tocol for parallel B-tree structures capable reducing the cost of structure-
modification-operation (SMO) compared to the conventional protocols
such as ARIES/IM and INC-OPT. We call this protocol the MARK-OPT
protocol, since it marks the lowest SMO occurrence point during optimistic
latch-coupling operations. The marking reduces middle phases for spread-
ing an X latch and removes needless X latches. In addition, we propose
three variations of the MARK-OPT, which focus on tree structure changes
from other transactions. Moreover, the proposed protocols are deadlock-
free and satisfy the physical consistency requirement for B-trees. These
indicate that the proposed protocols are suitable as concurrency control pro-
tocols for B-tree structures. To compare the performance of the proposed
protocols, the INC-OPT, and the ARIES/IM, we implement these protocols
on an autonomous disk system adopting the Fat-Btree structure, a form
of parallel B-tree structure. Experimental results in various environments
indicate that the proposed protocols always improve system throughput,
and 2P-REP-MARK-OPT is the most useful protocol in high update envi-
ronment. Additionally, to mitigate access skew, data should be migrated
between PEs. We also demonstrate that MARK-OPT improves the system
throughput under the data migration and reduces the time for data migration
to balance load distribution.

key words: index, concurrency control, B-tree, parallel DB, latch

1. Introduction

In a shared-nothing parallel machine for database systems,
retrievals and updates are performed in parallel on a pro-
cessing element (PE) storing the object data. Bottlenecks on
highly accessed PEs by access-request skew degrade system
performance. To improve the performance, data partitioning
methods are significant[1], [2]. The value range partition-
ing method with a parallel B-tree structure is an excellent
approach to handle the skews, as it also provides clustering
I/Os and fast access paths for both exact match and range
queries.

To make the parallel B-tree practical, it is important

Manuscript received May 2, 2006.
Manuscript revised January 4, 2007.

"The authors are with the Department of Computer Science,
Graduate School of Information Science and Engineering, Tokyo
Institute of Technology, Tokyo, 152—-8552 Japan.

""The author is also a JSPS Research Fellow (DC).

TThe author is also with the Global Scientific Information and
Computing Center, Tokyo Institute of Technology, Tokyo, 152—
8550 Japan.

“Preliminary versions of parts of this paper appear in the
Proceedings of the 16th Data Engineering Workshop of IEICE
(DEWS2005), DBSJ Letters, and the Proceedings of IEEE
SWOD2006.

a) E-mail: yoshihara@de.cs.titech.ac.jp

DOI: 10.1093/ietisy/e90-d.8.1213

and Haruo YOKOTA "', Member

to consider the cost of update operations requiring concur-
rent accesses to multiple PEs. If all PEs have copies of
a single B-tree, the synchronization between the PEs de-
grades the system throughput considerably. On the other
hand, if all index nodes of a B-tree are only placed on a
single PE, the PE becomes a bottleneck in parallel process-
ing due to the concentration of all index accesses to it. To
resolve these problems, an update-conscious parallel B-tree
structure, Fat-Btree, has been proposed, and experimental
results indicate that Fat-Btrees provide better performance
than other parallel B-trees [3].

It is also important to provide an efficient concurrency
control protocol for parallel B-tree structures, including Fat-
Btree. The INC-OPT protocol, which is suitable for a par-
allel B-tree on a shared-nothing parallel machine, has been
proposed [4]. The INC-OPT protocol outperforms the con-
ventional B-tree concurrency control protocols, such as the
B-OPT protocol [5] and the ARIES/IM protocol [6]. How-
ever, the costs of spreading an X latch in the protocol are
still high when structure modification operations (SMOs)
occurred frequently, which degrades the total performance.

In this paper, we propose a new concurrency control
protocol for parallel B-tree structures, MARK-OPT. It re-
duces the frequency of restarts retraversing from the root
node compared with the INC-OPT protocol. We also pro-
pose three variations of the protocol, INC-MARK-OPT, 2P-
INT-MARK-OPT and 2P-REP-MARK-OPT, focusing on
the tree structure changes caused by other transactions.

We implemented the four proposed protocols, the INC-
OPT and the ARIES/IM** on an autonomous disk system [7]
using the Fat-Btree as the distributed directory structure and
measured the system throughput with changing update ratio,
the number of threads on the clients. These experimental
results indicate that the proposed protocols are effective.

To mitigate access skew, data should be migrated be-
tween PEs. We also compared the throughput of MARK-
OPT with INC-OPT and ARIES/IM with changing patterns
of data migration. The experimental results indicate that the
MARK-OPT is also effective with data migration.

The concurrency control methods for update operations
and data migrations with the parallel B-trees are important
not only for parallel database systems, but also for more

“*We implemented ARIES/IM based on [6], but did not recov-
ery mechanism of it because we do not focus on recovery in this

paper.

Copyright © 2007 The Institute of Electronics, Information and Communication Engineers

1214

general parallel data storage. The number of unstructured
data files is increasing rapidly so they should be stored on
some parallel data storage having a global name space to
manage them efficiently. To realize efficient management
functions, including skew handling for a large number of
globally named files, an effective parallel B-tree with so-
phisticated concurrency control is required.

The remainder of the paper is organized as follows.
First, the concept of the Fat-Btree and data migration are
introduced as background in Sect. 2. Section 3 describes the
concurrency controls for parallel B-trees. We propose the
new concurrency control protocols for parallel B-tree struc-
tures in Sect.4. The experimental results are reported in
Sect. 5. We review related work in Sect. 6. The final section
presents the conclusions of this paper.

2. Background
2.1 Fat-Btree Structure

The Fat-Btree [3] is a form of parallel B-tree in which the
leaf pages of the B*-tree are distributed among PEs and each
PE has a subtree of the whole B-tree, which contains the
root node and intermediate index nodes between the root
node and leaf nodes allocated to the PE. Figure 1 shows an
example of a Fat-Btree using four PEs.

Although the number of copies increases with proxim-
ity to the root node in a Fat-Btree, the update frequency of
these nodes is relatively low. On the other hand, leaf nodes
have a relatively high update frequency but have no copy.
Consequently, the nodes to be updated more frequently have
lower overhead for updating with respect to the synchroniza-
tion between duplicated nodes.

Moreover, in the Fat-Btree, index pages are only nec-
essary for searching for the leaf pages stored in each PE.
Therefore, the Fat-Btree can have a high cache hit rate if
the index pages are cached in each PE. Because of the high
cache hit rate the update processes and the search processes
can be processed quickly, compared with a conventional par-
allel B-tree structure.

A root page
/ P

Fig.1 Fat-Btree.

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.8 AUGUST 2007

2.2 Data Migration with a Fat-Btree

Data migration is effective in handling the skew of an ac-
cess request distribution. For range partitioned data place-
ment the total access frequency of data stored in each PE
is eventually balanced by migrating data between PEs logi-
cally adjacent in the range partition.

The outline of the algorithm for migrating nodes is de-
scribed in [3]. Figure 2 illustrates an example of the data
migration with a Fat-Btree, where the right-most side leaf
index page with data pages in a PE are migrated to its right
side PE. In this case, because only two consecutive PEs are
involved in the data migration, the data migration can be
achieved without blocking the processes of the other PEs.

The tree structure of a Fat-Btree is unchanged by data
migration. However, the migration of a data page causes an
update in its parent index node and, occasionally in more
remote ancestor nodes, by recursive update. If the parent
node already exists in the destination PE, only an update of
the corresponding entry is required; otherwise, the parent
node must be moved to the destination PE. If the source
PE contains other children of the parent node, the source PE
must retain a copy of the node; otherwise the node in the
source PE must be removed.

3. Concurrency Control Methods

Some concurrency control method for the B-tree is neces-
sary to guarantee its consistency. The concurrency control
for handling SMOs influences the throughput. And that
SMOs on the parallel B-trees may require communicating
across a network to synchronize pages on each PE There-
fore, the concurrency control for the parallel B-trees struc-
tures is especially important.

Instead of locks, fast and simple latches are usually
used for concurrency control during traversing index nodes
in a B-tree [8]. A latch is a form of semaphore and the latch
manager does not have a deadlock detection mechanism.
Therefore, concurrency control for a B-tree node should be
deadlock-free.

e mlgrate

Fig.2 Data migration in Fat-Btree.

YOSHIHARA et al.: MARK-OPT: A CONCURRENCY CONTROL PROTOCOL FOR PARALLEL B-TREE STRUCTURES

3.1 Latch Modes

In this paper, a latch is assumed to have five modes: IS, IX,
S, SIX, and X as shown in Table 1 [8]. The symbol of “0O”
means that the two modes are compatible.

Because a parallel B-tree structure, including the Fat-
Btree, has duplicated nodes a special protocol for the dis-
tributed latch manager is required to satisfy the latch se-
mantics. Requested IS and IX mode latches can be pro-
cessed only on a local PE, whereas the other modes have to
be granted on all the PEs storing the duplicated nodes to be
latches. That is, the IS and IX modes have much smaller
synchronization cost than the S, SIX and X modes, which
require communication between the PEs. The S, SIX, and X
mode latches on remote copies are acquired by using their
pointers. In addition, such latches have to be set in linear
order to avoid deadlock. This means synchronization cost
grows in proportion to the number of PEs related to latches.

3.2 Concurrency Control for a Fat-Btree

As described above, concurrency control of the access path
should be deadlock-free because the latch which does not
have deadlock detection mechanism is effective for the B-
tree.

Figure 3 shows the Fat-Btree on which duplicating
pages in Fig. 1 is eliminated. Only two X latches must be
acquired on PEQ if an SMO occurs at pages bounded by the
dashed line at the lower left in Fig.3. X latches must be
acquired on PE2 and PE3 at a time to synchronize copies
of index page on PE2 and PE3 if an SMO occurs at pages
across PEs bounded by the dotted line at the lower right in
Fig. 3. Therefore, the SMO like this requires communicat-
ing across a network. X latches must be acquired on all PEs

Table 1 Latch matrix.
Mode | IS IX S SIX X
IS O O O ©
IX o O
S O O
SIX | O
X

1215

at a time if an SMO occurs at pages including root pages
bounded by the solid line at the center of Fig. 3. The cost of
acquiring X latches on pages at upper level is larger like this.
Because the S, SIX and X modes in a parallel B-tree require
synchronization between PEs and use of these latches on
nodes with the copies in many PEs increases synchronous
overheads between PEs. Therefore, on index nodes at upper
levels with the copies in many PEs in the Fat-Btree use of
the S, SIX, and X mode latches should be avoided as much
as possible except when the X latches at the root pages have
no other choice to be acquired to update the root pages.

An alternative concurrency control protocol, suggested
by Mohan et al. [6], acquires an X tree latch to protect the
entire B-tree when SMOs occur. This protocol in a parallel
B-tree in a distributed environment is simplified if a speci-
fied PE takes care of the tree latch. However, the PE taking
care of the tree latch becomes a bottleneck when the number
of PEs increases. The bottleneck prevents higher throughput
by more PEs in the distributed environment. Moreover, the
synchronous overhead between PEs is large because latches
on the entire tree are acquired. Communication to acquire
the tree latch is required even when an SMO frequently oc-
curs within one PE. Therefore, the concurrency control us-
ing the tree latch is unsuitable for the parallel B-tree.

As a summary of the conditions above, the following
conditions of the concurrency controls for parallel B-trees
are proposed in [4].

Condition 1: A concurrency control method for parallel
B-trees should satisfy the following conditions:

(a) No concurrency control protocol method for index
nodes, which cause deadlocks, should be used.

(b) Use of S, SIX, and X mode latches on index nodes at
upper levels of the B-tree should be avoided as much
as possible.

(c) The entire tree should not be latched, even for a short
duration.

B-OPT [5], OPT-DLOCK [9], and ARIES/IM[6] are
excellent concurrency control methods for a B-tree on a sin-
gle machine. However, they do not satisfy Condition 1: B-
OPT does not satisfy Condition 1-(b), OPT-DLOCK does
not satisfy Condition 1-(a), and ARIES/IM does not satisfy
Condition 1-(c). Therefore, these concurrency controls are
unsuitable for parallel B-trees, such as Fat-Btree.

3.3 INC-OPT Protocol

The INC-OPT protocol satisfying Condition 1 has been pro-
posed [4] as a concurrency control protocol for parallel B-
trees, including Fat-Btree.

The INC-OPT protocol to search for a key is simple.
An IS mode latch is held on the root node initially, then the
following steps are performed during traversal in the parallel
B-tree:

1. Derive a pointer to a child node by comparing the key
in the parent node.

1216

2. Acquire an IS mode latch on the child, and release the
latch on the parent.

3. Repeat the above steps until the traverse reaches a leaf
node.

The above procedure is usually called latch-coupling [8].
When the traverse arrives at a leaf node, it acquires an S
latch on the leaf and reads data from it.

The INC-OPT protocol for an update consists of two
phases.

The first phase: The traverse reaches a leaf with latch-
coupling with the IX latches. At the leaf, an X latch
is acquired. If the leaf node is not full, the updater up-
dates it. Otherwise, if the leaf node is full it splits, this
latch is once released and it then shifts to the second
phase.

The second phase: The INC-OPT tries to acquire the X
mode latches on the lower two nodes, i.e., the leaf node
and its parent, with the X mode latches. If the parent
node also causes an SMO, it releases all latches and
tries to acquire the X mode latches on the lower three
nodes. This process continues until all the nodes in-
volved by SMOs are protected by X latches.

The INC-OPT protocol is precisely defined in [4].

When an SMO occurs, the INC-OPT may need multi-
ple restarts. When the root node causes an SMO, the INC-
OPT requires as many phases as the height of the B-tree.
This increases the response time of the update operations.
In addition, it decreases the system throughput because of
the multiple X latches used on the index nodes at upper lev-
els.

4. Proposed Protocols
4.1 MARK-OPT Protocol

We propose a new concurrency control protocol for par-
allel B-trees, including Fat-Btree, which marks the lowest
SMO occurrence point during optimistic latch coupling op-
erations. We call this the marking optimistic (MARK-OPT)
protocol, which improves the response time by reducing the
frequency of restarts. In addition, the MARK-OPT produces
high system throughput because of the reduction of mid-
dle phases for spreading an X latch and removes needless X
latches.

The procedure MARK-OPT uses to search for a key
is identical to INC-OPT, whereas its update consists of the
following two phases:

The first phase: The traverse reaches a leaf with latch-
coupling with the IX latches. If the index node is not
full, MARK-OPT marks the height of the node from
the root node. Whenever the index node is not full, the
marking height is updated one by one. On the leaf, an
X latch is acquired. If the leaf node is not full, the up-
dater updates it. If the leaf node is full, a split occurs in
the leaf, this latch is released immediately and then the

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.8 AUGUST 2007

procedure shifts to the second phase.

The second phase: The height of the tree is marked as in
the first phase. MARK-OPT tries to acquire the X
mode latches on the leaf node and the index node below
the height marked in the previous phase. If the nodes
involved by SMOs are not protected by X latches, it re-
leases all latches and restarts. This process continues
until all the nodes involved by SMOs are protected by
X latches.

More precisely, the level of node (%) is one for the root
node, and & is H for the leaf node where H is the height
of the tree. When [denotes the level of the B-tree where
the MARK-OPT has to start to use X latches, the variable
[is initially set to H, thus, only a leaf node is latched with
the X mode in the first phase like INC-OPT. The height
marked during a traverse is denoted by m. The MARK-OPT
protocol is shown in Fig. 4. The first phase and the second
phase in Fig.4 show the same in the previous paragraph.
During the latch-coupling on lines 3 to 9 or lines 19 to 25 in
Fig. 4, the marking of MARK-OPT is performed on line 6 or
22. The variable [is set to m on line 13 or 36 before restarts,
thus, the leaf node and the index node below the height (m)
marked in the previous phase is latched with the X mode in
lines 26 to 34. When all the nodes involved by SMOs are

1 1 l:= H;
2 Parent := null; Child := ROOT; h :=1; m :=1;
3 while h < | do begin /* Latch-coupling */
4 IX latch on Child, unlatch Parent;
5 if Child is not full then
2 6 m := h; /* Marking */
& 7 Determine NewChild;
&8 Parent := Child; Child := NewChild; h := h + 1;
% 9 end;
& 10 X latch on Child and its copies;
& /* Leaf is X latched */
11 Unlatch Parent;
12 if Child is full then
13 Release all granted latches; | := m;
/* Restart */
14 else begin
15 Update;
1 16 Release all granted latches; operation completion;
17 end;

1 18 Parent := null; Child := ROOT; h:=1; m := 1;
19 while h < [do begin /* Latch-coupling */

20 IX latch on Child, unlatch Parent;

21 if Child is not full then

22 m := h; /* Marking */

23 Determine NewChild;

24 Parent := Child; Child := NewChild; h := h + 1;

25 end;

26 X latch on Child and its copies;

/* Index on marking is X latched */
27 Unlatch Parent;

Determine NewChild;

29 Parent := Child; Child := NewChild; h := h + 1;
30 while h £ H do begin

The second phase
N
oo

31 X latch on Child and its copies;

/* Nodes below marking are X latched */
32 Determine NewChild;
33 Parent := Child; Child := NewChild; h := h + 1;
34 end;
35 if X latch are not sufficient for SMOs then
36 Release all granted latches; | := m; goto 18;

/* Restart */
37 else begin
38 Update including the SMOs;
Release all granted latches; operation completion;
40 end;

Fig.4 The MARK-OPT protocol.

YOSHIHARA et al.: MARK-OPT: A CONCURRENCY CONTROL PROTOCOL FOR PARALLEL B-TREE STRUCTURES

protected by X latches, the update on line 38 is performed.

Because MARK-OPT decided the range of the X latch,
based on the state of the previous phase obtained by mark-
ing, it may require multiple restarts when SMOs have
spread. However, the number of maximum phases in the
MARK-OPT is H at most as for INC-OPT. MARK-OPT
requires only a restart once in many cases because SMOs
rarely spread. Therefore, MARK-OPT does not require
many restarts like INC-OPT even when SMOs occur on
nodes at upper levels.

The MARK-OPT protocol satisfies Condition 1 in
Sect. 3.2. The reasons are:

1. It is deadlock-free because it acquires latches top-
down.

2. It does not latch the index nodes with the S, SIX modes,
and does not acquire needless X mode latches on nodes
not relating to SMOs.

3. It never uses a tree latch.

It is easy to prove that the MARK-OPT satisfies the
physical consistency requirement for B-trees. When an up-
dater realizes that it does not acquire all required X latches
for the SMOs, the updater releases all the latches without
modifying any data. Thus, the MARK-OPT essentially fol-
lows the two phase locking (2PL). The 2PL ensures the
physical consistency of the B-tree structure for each up-
date [10].

4.2 Extensions of the MARK-OPT Protocol

We propose three variations of the concurrency control
protocol, INC-MARK-OPT, 2P-INT-MARK-OPT and 2P-
REP-MARK-OPT, which are extensions of MARK-OPT.
When the marked node in the first phase is updated from
other transactions, the mark may not show the range of the
SMO. It is not effective to acquire X latches based on the
mark like MARK-OPT at such time. These extension pro-
tocols focus on tree structure changes from other transac-
tions. To process more effectively than MARK-OPT when
the marked node is changed, we propose these protocols
which reconsider the range of the SMO at such time.

In each protocol only the second phase of the update
protocol is different. MARK-OPT does not change the pro-
cess even if the tree structure is changed by other transac-
tions. On the other hand, the extension protocols look at the
state of the node first latched with the X mode in that phase
and checks the change from the previous phase of a subtree
relating to SMO. If the extension protocols judge that the
tree structure has been changed, each protocol executes a
different process. The difference in the processes is shown
in Table 2. The columns indicate the process phases, be-
cause the protocols judges if the tree structure has changed,
and the rows indicate the presence of a restart at that time.

Because these extension protocols mark the height of
the tree as does MARK-OPT, they execute very similar pro-
cess as MARK-OPT except for phase change. All of these
also satisfy Condition 1.

1217
Table 2 Comparison of concurrency control protocols by handling for a
tree structure change between phases.
continue shift to
the 2nd phase the 1st phase
MARK-OPT
non-restart INC-OPT 2P-INT-MARK-OPT
restart INC-MARK-OPT 2P-REP-MARK-OPT

4.2.1 INC-MARK-OPT Protocol

The incremental marking optimistic (INC-MARK-OPT) pro-
tocol restarts when it judges that the tree structure has
changed in the second phase. In this case, the height marked
for next phase is not complete because traverse does not
reach a leaf node. However, the INC-MARK-OPT decides
the range of the X latch based on that information.

We indicate an example that MARK-OPT processes in-
efficiently. The range of X latches acquired according to
the mark is not enough, if the nodes below the height of
marking became full by modification of other transaction
while MARK-OPT restarts. In this time, MARK-OPT also
restarts after it traverses to the leaf node with acquiring X
latches, and it has useless traversal and X latches. To not
have useless traversal and latches like this, INC-MARK-
OPT judges that the tree structure has changed, it does not
traverse to the leaf node and it restarts on the node. Then,
it acquires the X latches according to renewed mark. There-
fore, in this case, INC-MARK-OPT acquires less X latches
than MARK-OPT, and INC-MARK-OPT processes more
efficiently than MARK-OPT.

The second phase of the INC-MARK-OPT protocol for
update is as follows. The INC-MARK-OPT acquires the
X mode latches on the node marked in the previous phase.
If the node is not full, it executes a process similar to the
MARK-OPT to the leaf node. If the node is full, it releases
all latches and restarts. This process continues until all the
nodes involved by SMOs are protected by X latches.

We define the INC-MARK-OPT protocol precisely by
using the same variables in Fig.4. The INC-MARK-OPT
protocol is shown in Fig. 5. The first phase is omitted since
this phase is the same in Fig.4. The part in the frame
is added to MARK-OPT. In this part, INC-MARK-OPT
checks the marked node change and performs handling for
the change.

If the INC-MARK-OPT judges that the tree structure
has been changed, it restarts at once. Therefore, the INC-
MARK-OPT does not acquire more needless X latches than
MARK-OPT when SMOs have actually spread. On the
other hand, the INC-MARK-OPT may judge that the tree
structure has changed when SMOs have contracted. In
that case, the INC-MARK-OPT acquires more needless X
latches than MARK-OPT. Moreover, INC-MARK-OPT in-
creases the frequency of restarts compared with MARK-
OPT. However, the number of maximum phases in the INC-
MARK-OPT is H at most the same as MARK-OPT because
it spreads the range of the X latch at each restart.

1218
1 18 Parent := null; Child := ROOT; h :=1; m := 1;
19 while h < | do begin /* Latch-coupling */
20 IX latch on Child, unlatch Parent;
21 if Child isn’t full then
22 m := h; /* Marking */
23 Determine NewChild;
24 Parent := Child; Child := NewChild; h := h + 1;
25 end;
o 26 X latch on Child and its copies;
& /* Index on marking is X latched */
’a 27 Unlatch Parent;
el 28 if Child is full then
S| 29 Release all granted latches; | := m; goto 18;
§ /* Restart */
o 30 Determine NewChild;
ﬁ 31 Parent := Child; Child := NewChild; h := h + 1;
32 while h £ H do begin
33 X latch on Child and its copies;
/* Nodes below marking are X latched */
34 Determine NewChild;
35 Parent := Child; Child := NewChild; h := h + 1;
36 end;
37 if X latch are not sufficient for SMOs then
38 Release all granted latches; [:= m; goto 18;
/* Restart */
39 else begin
40 Update including the SMOs;
! 41 Release all granted latches; operation completion;

42 end;

Fig.5 The INC-MARK-OPT protocol.

4.2.2 2P-INT-MARK-OPT Protocol

The 2-phase integrated marking optimistic (2P-INT-MARK-
OPT) protocol performs the latch-coupling with IX latches
below the node when it judges that the tree structure has
changed in the second phase. That is, it returns to the first
phase. Because the MARK-OPT marks the tree state in the
second phase, it shifts to the first phase without the problem
of marking that is incomplete.

On the example in Sect.4.2.1, 2P-INT-MARK-OPT
judges that the tree structure has changed, it acquires the
X latches according to renewed mark after it traverse to the
leaf node with the latch-coupling with the IX latches as well
as first traversal. The latch-coupling with IX latches dur-
ing second traversal of 2P-INT-MARK-OPT has lower cost
than acquiring X latches during that of MARK-OPT. There-
fore, 2P-INT-MARK-OPT processes more efficiently than
MARK-OPT. In this case, 2P-INT-MARK-OPT processes
obviously less efficiently than INC-MARK-OPT because of
useless second traversal with latch-coupling. However, if
the node on the height of marking is full but the nodes below
the height are not full, 2P-INT-MARK-OPT performs the
update in second traversal. On the other hand, INC-MARK-
OPT performs the update in third traversal. So, two traver-
sals of 2P-INT-MARK-OPT are more efficient than three
traversals of INC-MARK-OPT.

The second phase of the 2P-INT-MARK-OPT proto-
col for update is as follows. The 2P-INT-MARK-OPT ac-
quires the X mode latches on the node marked in the pre-
vious phase. If the node is not full, it executes a process
similar to MARK-OPT to the leaf node. If the node is full,
it shifts to the first phase on the node.

We define the 2P-INT-MARK-OPT protocol precisely
by using the same variables in Fig. 4. The 2P-INT-MARK-

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.8 AUGUST 2007

1 18 Parent := null; Child := ROOT; h :=1; m := 1;
19 while h < | do begin /* Latch-coupling */
20 IX latch on Child, unlatch Parent;
21 if Child isn’t full then
22 m := h; /* Marking */
23 Determine NewChild;
24 Parent := Child; Child := NewChild; A := h + 1;
25 end;
o 26 X latch on Child and its copies;
i /* Index on marking is X latched */
-2 27 Unlatch Parent;
< 28 if Child is full then
g 29 l:= H; goto 7,
§ /* Shift to the first phase */
P Determine NewChild;
g 31 Parent := Child; Child := NewChild; h := h + 1;
32 while h £ H do begin
33 X latch on Child and its copies;
/* Nodes below marking are X latched */
34 Determine NewChild;
35 Parent := Child; Child := NewChild; h := h + 1;
36 end;
37 if X latch are not sufficient for SMOs then
38 Release all granted latches; [:= m; goto 18;
/* Restart */
39 else begin
40 Update including the SMOs;
1 41 Release all granted latches; operation completion;

42 end;

Fig.6 The 2P-INT-MARK-OPT protocol.

OPT protocol is shown in Fig. 6. The first phase is omitted
since this phase is the same in Fig. 4. The part in the frame
is added to MARK-OPT. In this part, 2P-INT-MARK-OPT
checks the marked node change and performs handling for
the change.

If the 2P-INT-MARK-OPT judges that the tree struc-
ture has changed, it shifts to the first phase. Therefore, the
2P-INT-MARK-OPT decreases the frequency of restarts to a
greater extent than the INC-MARK-OPT and it does not ac-
quire more needless X latches than MARK-OPT. Moreover,
2P-INT-MARK-OPT does not acquire needless X latches
when SMOs have contracted. On the other hand, the 2P-
INT-MARK-OPT may require more restarts than H, the
height of the tree. However, this will happen infrequently.
In the worst case, the 2P-INT-MARK-OPT cannot com-
plete the process but the 2P-INT-MARK-OPT requires only
a small number of restarts because this will not happen in
practice.

4.2.3 2P-REP-MARK-OPT Protocol

The 2-phase repetitive marking optimistic (2P-REP-MARK-
OPT) protocol restarts when it judges that the tree structure
has changed in the second phase. The 2P-REP-MARK-OPT
returns to the first phase after it restarts.

Because 2P-INT-MARK-OPT performs the latch-
coupling with IX latches after it judges that the tree structure
has changed, with acquiring X latches, it may wait for other
transactions to release latches. This decreases the degree
of parallel operations. On the other hand, in this case, 2P-
REP-MARK-OPT releases all granted latches and it restarts.
As above, 2P-REP-MARK-OPT does not wait with acquir-
ing X latches except acquiring for updates in last traversal.
Therefore, 2P-REP-MARK-OPT does not wait with acquir-
ing useless X latches.

YOSHIHARA et al.: MARK-OPT: A CONCURRENCY CONTROL PROTOCOL FOR PARALLEL B-TREE STRUCTURES

1 18 Parent := null; Child := ROOT; h :=1; m := 1;
19 while h < | do begin /* Latch-coupling */
20 IX latch on Child, unlatch Parent;
21 if Child isn’t full then
22 m = h; /* Marking */
23 Determine NewChild;
24 Parent := Child; Child := NewChild; h := h + 1;
25 end;
o 26 X latch on Child and its copies;
& /* Index on marking is X latched */
4 27 Unlatch Parent;
— [28 if Child is full then
é 29 Release all granted latches; goto 1;
g /* Restart and shift to the first phase */
¢ 30 Determine NewChild;
ﬁ 31 Parent := Child; Child := NewChild; h := h + 1;
32 while h £ H do begin
33 X latch on Child and its copies;
/* Nodes below marking are X latched */
34 Determine NewChild;
35 Parent := Child; Child := NewChild; h := h + 1;
36 end;
37 if X latch are not sufficient for SMOs then
38 Release all granted latches; [:= m; goto 18;
/* Restart */
39 else begin
40 Update including the SMOs;
! 41 Release all granted latches; operation completion;

42 end;

Fig.7 The 2P-REP-MARK-OPT protocol.

The second phase of the 2P-REP-MARK-OPT proto-
col for update is as follows. The 2P-REP-MARK-OPT ac-
quires the X mode latch on the node marked in the previous
phase. If the node is not full, it executes a process similar to
MARK-OPT to the leaf node. If the node is full, it releases
all latches and it executes the process in the first phase on
the root node.

We define the 2P-REP-MARK-OPT protocol precisely
by using the same variables in Fig. 4. The 2P-REP-MARK-
OPT protocol is shown in Fig. 7. The first phase is omitted
since this phase is the same in Fig. 4. The part in the frame
is added to MARK-OPT. In this part, 2P-REP-MARK-OPT
checks the marked node change and performs handling for
the change.

If the 2P-REP-MARK-OPT judges that the tree struc-
ture has changed, it restarts at once and shifts to the first
phase. Therefore, the 2P-REP-MARK-OPT acquires the
least needless X latches of the proposed protocols although
it increases the frequency of restarts more than any of the
proposed protocols. As well as 2P-INT-MARK-OPT, the
2P-REP-MARK-OPT may require more restarts than H, the
height of the tree. However, the 2P-REP-MARK-OPT re-
quires only a small number of restarts because this is un-
likely to happen in practice.

4.3 Comparisons of Proposed Protocols

We compare the features of the protocols for update. The
X latch acquisition time per process is obtained by the fre-
quency of restarts and the X latch acquisition time per phase.
This time influences the performance of the protocol. There-
fore, we compare the frequency of restarts and the X latch
acquisition time per phase of the proposed protocols.

First, we compare the frequency of restarts of each of
the proposed protocols. The extension protocols increase

1219
Table 3 Experimental environment.

No. of Nodes: 128 (Storages), 16 (Clients)
CPU: AMD Athlon XP-M 1800+ (1.53 GHz)
Memory: PC2100 DDR SDRAM 1GB
Hard Drive: TOSHIBA MK3019GAX

(30 GB, 5400 rpm, 2.5 inch)
OS: Linux 2.4.20
Java VM: Sun J2SE SDK 1.5.0_01 Server VM

the frequency of restarts more than MARK-OPT, and 2P-
REP-MARK-OPT increases the frequency of restarts in the
proposed protocols more than the others.

Next, we compare the X latch acquisition time per
phase for each of the proposed protocols. At the same time,
the extension protocols do not acquire X latches on multi-
ple nodes apart from the update phase. Therefore, the ex-
tension protocols decrease the X latch acquisition time per
phase more than the MARK-OPT. The INC-MARK-OPT
increases the X latch acquisition time per phase more than
the other extension protocols because it increases the acqui-
sition of the X latches on a node in the upper levels more
than the others.

We compare these proposed protocols experimentally
in Sect.5.5.

5. Experiments

To show that MARK-OPT and its extension protocols are
effective, we implemented them on an autonomous disk sys-
tem [7],[11],[12] on a blade system, which uses the Fat-
Btree, and evaluated their performance under a number of
conditions.

5.1 Experimental Environment

We used an experimental system of the autonomous disk
distributed storage technology we proposed [7]. The experi-
mental system was implemented on a 144 node blade system
using the Java programming language on Linux. We used
128 nodes for storing data and 16 nodes as clients sending
requests. A preliminary experiment showed that the back-
bone network switch had adequate performance, which does
not limit the system throughput in the experiment. The ex-
perimental environment is summarized in Table 3.

5.1.1 Initial Fat-Btree Construction

We prepared a leaf node on each PE, a seed of the Fat-Btree
and the key of the leaf node was the lower bound value of
the key of node stored in the PE. We set the key value of the
initial leaf nodes in ascending order of PE number. There-
fore, the leaf node stored in each PE by follow-on insertion
was divided statically. We then repeatedly inserted random
elements in the initial Fat-Btree. Table 4 shows the basic
parameters we set for the experiments. These parameters
were chosen to distinguish clearly the differences between
the protocols.

1220
Table 4 Parameters used for the experiments.
Page size: 4KB
Tuple size: 3KB
Max No. of entries in an index node (fanout): 8
Max No. of tuples in a leaf node: 1

6000
—=— MARK-OPT

—4— INC-MARK-OPT
—%— 2P-INT-MARK-OPT
2P-REP-MARK-OPT
*- INC-OPT
--&- ARIES/IM

5000 ¥

4000

2000

Throughput in Operations per Second
w
<]
o
1S3

o
=]
o

256 384 512
Number of Client Threads

Fig.8 Comparison of concurrency control protocols with changing
numbers of threads on clients.

The experiments for this paper were organized as fol-
lows. First, we evaluated the performance by changing the
number of client threads. Next, we evaluated the perfor-
mance by changing the update ratio, counting the frequency
of restarts. Then, we evaluated the performance and counted
the frequency of restarts and acquisitions of X latches in a
high update environment. Finally, we evaluated the perfor-
mance with data migrations, measuring the data migration
execution time.

5.2 Comparison with Changing Number of Threads on
Clients

Sixteen clients sent requests to the PEs containing the Fat-
Btree with 256 tuples per PE, for 60 seconds. The access
frequencies were uniform and the update ratio was fixed at
60%.

Figure 8 shows the performance of the six concurrency
controls when the total number of threads on clients in the
whole system changes from 128 through 512 (the number
of threads in parallel per blade changes from eight through
thirty-two). The solid lines show the performance of the four
proposed protocols, the dotted line shows the performance
of INC-OPT and the dashed line shows the performance of
ARIES/IM. The horizontal and vertical axes are the number
of the threads on clients and throughput, respectively.

The throughput of ARIES/IM is always very low. This
is because ARIES/IM must synchronize among all the PEs
by acquiring the tree latch when an SMO happens. The
cost of this synchronization extremely degrades the system
performance. Moreover, the throughput of the INC-OPT
decreases as the numbers of client threads increases. In
contrast to the INC-OPT, the proposed protocols can pro-
vide reasonable throughput although the numbers of client

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.8 AUGUST 2007

5000
[
4500

w B
a o
o o
o ©

w
o
=3
o

NN

o

S o

o o
T

1500 Tl

Throughput in Operations per Second

1000 TTre- .

—8— MARK-OPT
[= 2P-INT-MARK-OPT
INC-OPT

—+— ING-MARK-OPT __~""====-o___
REP.MARK-OPT

33
=}
o

2=
-~ ARIES/

*

0 20 40 60
Ratio of Update Operations (%)

Fig.9 Comparison of concurrency control protocols with changing
update ratio.

threads increases. The decline in the throughput of the pro-
posed protocols is much slower than that of INC-OPT even
when the frequency of accesses from the clients is very high.
This is because the proposed protocols reduce the frequency
of restarts compared with the INC-OPT when SMOs occur,
although the increase in the accesses from clients increases
the occurrence of SMOs.

When update ratio is less than 60%, the throughput of
all protocols increases, and the difference of each through-
put contracts. However, the proposed protocols always im-
prove the throughput of the conventional protocols when the
update operations are included. This can be inferred from
the experimental result in Sect. 5.3.

5.3 Comparison with Changing Update Ratio

Sixteen clients (thirty-two threads in parallel per blade) sent
requests to PEs containing the Fat-Btree with 256 tuples per
PE, for 60 seconds. The access frequencies were uniform.
Figure 9 shows the performance of the six concurrency con-
trols as the update ratio changes from 0% through 60%. The
solid lines show the performance of the four proposed proto-
cols, the dotted line shows the performance of INC-OPT and
the dashed line shows the performance of ARIES/IM. The
horizontal and vertical axes are the update ratio and through-
put, respectively.

When the update ratio was 0%, the results of all pro-
tocols were virtually the same. This is because the concur-
rency controls used to retrieve data are basically the same.
But, the throughput of ARIES/IM decreases sharply even
though the increase in the ratio of update operations is small.
This is because the cost of global synchronization by using
the tree latches for SMOs caused by the update operations.
On the other hand, when the update ratio is low, the results
of all other protocols were better than that of ARIES/IM and
almost the same. However, the throughput of the INC-OPT
decreases as the update ratio increases. In contrast to the
INC-OPT, the proposed protocols can provide reasonable
throughput although the update ratio increases. The decline
in the throughput of the proposed protocols is much slower

YOSHIHARA et al.: MARK-OPT: A CONCURRENCY CONTROL PROTOCOL FOR PARALLEL B-TREE STRUCTURES

10000
@ MARK-OPT
) O INC-MARK-OPT
Al B 2P-INT-MARK-OPT
e 0 2P-REP-MARK-OPT
< mINC-OPT
S 1000 |
©
[}
o
o
3
o
£ 100
)
3
o
£
2
5 L
& 10
€
3
13
Q
o
1
first two times or more
Fig.10 Comparison of restart ratio (update ratio: 60%).

than that of INC-OPT even when the update operations are
included. This is because the proposed protocols reduce
the frequency of restarts compared with the INC-OPT when
SMOs occur, although the increase in the update ratio in-
creases the occurrence of SMOs. Moreover, the results of
the four proposed protocols are always similar.

5.4 Comparison of Restart Ratio

We also counted the frequency of restarts in the experiment
described in Sect.5.3. Figure 10 shows the frequency of
restarts per operation of the five concurrency controls when
the update ratio is 60%. The left and right charts show the
ratio of first restart and second and more restarts on the op-
eration, respectively.

The ratios of first restart on the operation of all proto-
cols are almost the same, because the concurrency controls
of an update are basically the same until first restarts. The
ratio of second and greater restarts on the operation of the
INC-OPT is much higher than that of the proposed proto-
cols, because the INC-OPT requires multiple restarts when
SMOs occur extensively. In the comparison of the proposed
protocols, the ratio of second and greater restarts on the op-
eration of the 2P-REP-MARK-OPT is the highest, those of
INC-MARK-OPT and 2P-INT-MARK-OPT are next, and
that of MARK-OPT is the lowest.

This result indicates that marking SMO occurrence
point in the proposed protocols is effective. The perfor-
mances of the proposed protocols are similar because they
rarely required multiple restarts in this experiment. We pro-
pose the extensions for the environment where many SMOs
occur. Therefore, the performances of the proposed proto-
cols are similar in the other environments.

5.5 Comparison in High Update Environment

The performances of the proposed protocols were similar in
an environment where many SMOs did not occur. To com-
pare the proposed protocols, we experimented in an unreal-
istic environment where many SMOs occur. For that pur-
pose, we set the update ratio to 100%.

1221

2500

O Throughput

2000

1500

1000 r

500

Throughput in Operations per Second

MARK-OPT INC-MARK- 2P-INT- 2P-REP-
OPT MARK-OPT MARK-OPT

INC-OPT

Fig.11 Comparison of throughput in high update environment (update
ratio: 100%).

1000

O Restart Ratio

100

Restart Ratio
in Restarts (two times or more) per Operation (10"-3)

MARK-OPT INC-MARK- 2P-INT- 2P-REP-
OPT MARK-OPT MARK-OPT

INC-OPT

Fig. 12
100%).

Comparison of restart in high update environment (update ratio:

O X Latch Ratio

X Latch Ratio in X Latches per Operation

MARK-OPT INC-MARK- 2P-INT- 2P-REP-
OPT MARK-OPT MARK-OPT

INC-OPT

Fig.13 Comparison of X latch ratio in high update environment (update
ratio: 100%).

Sixteen clients (thirty-two threads in parallel per blade)
sent requests to PEs containing the Fat-Btree with 256 tu-
ples per PE, for 60 seconds. The access frequencies were
uniform. Figures 11, 12, and 13 show the performance of
the five concurrency controls, the frequency of second and
greater restarts per operation of those, and the frequency
of acquisitions of X latches per operation of those, respec-

1222

tively.

The throughput of INC-OPT is lower than that of the
proposed protocols as in the other experiments. This is
because the INC-OPT requires more numerous multiple
restarts than the proposed protocols in this environment.

In the comparison of the proposed protocols, the fewest
multiple restarts are for MARK-OPT. MARK-OPT does
not restart when the tree structure is changed. The multiple
restarts of INC-MARK-OPT and that of 2P-INT-MARK-
OPT are next lowest, INC-MARK-OPT restarts at once
when the tree structure is changed and 2P-INT-MARK-OPT
returns to the first phase although it does not restart. In ad-
dition, the multiple restarts of 2P-REP-MARK-OPT are the
greatest. 2P-REP-MARK-OPT restarts and returns to the
first phase when the tree structure is changed. As above, al-
though Fig. 12 shows the characteristics of the restart ratio
of the proposed protocols, it does not show the causations
between the restart ratio and the throughput. This is because
the proposed protocols perform different processes during
second or later each traversal and much traversal do not di-
rectly impact the throughput.

On the other hand, the throughput of the proposed pro-
tocols is associated with the X latch ratio. Because the
proposed protocols rarely perform different processes, the
gap of the throughput among the proposed protocols is not
wide. INC-MARK-OPT does not improve the throughput
of MARK-OPT. This is because it may acquire undue X
latches according to the marking based on checking the
nodes at upper levels. Therefore, the throughput of the
INC-MARK-OPT is the lowest because of the time of ac-
quisition per X latch. On the other hand, 2P-INT-MARK-
OPT and 2P-REP-MARK-OPT improve the throughput of
MARK-OPT. This is because two protocols require one
nodes latched with X mode at a time except acquiring for
updates in last traversal and they acquire X latches accord-
ing to the marking based on checking the nodes on all height
in the last traversal. And that 2P-REP-MARK-OPT with
acquiring X latches does not wait for other transactions to
release latches except acquiring for updates in last traversal
although the protocols frequently wait when many SMOs
occur. As a result, 2P-REP-MARK-OPT is the most effec-
tive when many SMOs occur.

5.6 Comparison with Changing Ratio of Data Migration

To change the frequency of data migrations we changed the
number of processes in parallel to migrate the data. Each
process migrated the data on different PEs. To migrate
repeatedly 100 leaf nodes between two adjacent PEs, the
clients sent data migration requests.

Sixteen clients (thirty-two threads in parallel per blade)
sent requests to PEs containing the Fat-Btree with 256 tuples
per PE, for 60 seconds. The access frequencies were uni-
form and the update ratio was fixed at 40%. Figure 14 shows
the performance of the two concurrency controls when the
number of processes migrating in parallel changes from 0
through 64. The solid and dotted and dashed lines show the

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.8 AUGUST 2007

4500
—8— MARK-OPT

4000 +- INC-OPT
— -#- ARIES/IM

= ~N N w [}

o o a o 2]

=3 =3 [=} =3 =3

S S s} S S
*

Throughput in Operations per Second

1000 ¢

a
[=}
o
h
'
I

'

i

|

'

i

1

|

|

|
[

Number of Processes Migrating

Fig.14 Comparison with changing ratio of data migration.

5000
—a— MARK-OPT

4500 ¢ INC-OPT
--o- ARIES/IM

- NN W W A
g o a o a 9
o © © © o o9
S & © © o o

Throughput in Migrations per Second

0 ' P . ==
0 16 32 64
Number of Processes Migrating

Fig.15 Comparison of data migration throughput.

performances of MARK-OPT, INC-OPT and ARIES/IM,
respectively. The horizontal and vertical axes are the num-
ber of processes migrating in parallel and the throughput re-
spectively. Moreover, Fig. 15 shows the throughput of data
migration.

The throughput of INC-OPT decreases as the fre-
quency of data migrations increase. On the other hand,
MARK-OPT can provide acceptable throughput even when
the frequency of data migrations increases. The decline in
the throughput of MARK-OPT is much less than that of
INC-OPT. In addition, MARK-OPT improves the through-
put of data migration. This is because many SMOs occur
with increasing data migration. Moreover, ARIES/IM takes
quite a lot of time to the data migration. This is because the
data migration is sure to cause a SMO.

MARK-OPT can always provide high throughput in an
environment with data migration. In addition, MARK-OPT
reduces the time for data migration. Therefore, MARK-
OPT can achieve fast load-balancing operations. These in-
dicate that MARK-OPT is an effective concurrency control
for data migration.

6. Related Work

A concurrency control protocol for shared-nothing parallel

YOSHIHARA et al.: MARK-OPT: A CONCURRENCY CONTROL PROTOCOL FOR PARALLEL B-TREE STRUCTURES

B-trees such as Fat-Btree that is combined INC-OPT with
preparatory operation (PO) [13], the preparatory operations-
parallel (PO-P) protocol has been developed [14]. In PO-P,
POs are adapted for update processes when they encounter
unsafe nodes. By using this method any update operations
are done in small atomic operations which require only two
levels’ nodes latched at a time on the global parallel B-tree.
Therefore, PO-P increases the degree of parallel operations
by decreasing the latch wait time for processes which run in
parallel on many PEs.

Although both MARK-OPT and PO-P are the exten-
sions of INC-OPT, they have different approaches for im-
provement of INT-OPT. MARK-OPT reduces the frequency
of restarts by marking the SMO occurrence during opti-
mistic latch coupling operations. The reduction also reduces
the frequency of X latches. On the other hand, PO-P re-
duces the number of nodes on which X latches are acquired
at a time. However, PO-P requires the restarts each time un-
safe nodes appear, and PO-P does not reduce the frequency
of restarts. Therefore, we expect that the response time of
MARK-OPT is shorter than that of PO-P. On the other hand,
MARK-OPT finally acquires X latches on all nodes rele-
vant to an SMO at a time although PO-P always requires
only two levels’ nodes latched. Therefore, we think that the
degree of parallel operations on MARK-OPT is lower than
PO-P. As above, it is difficult to say which protocol is better
on the qualitative evaluation. We would like to evaluate the
performance of our protocols and PO-P on the experimental
system as future work.

7. Conclusion

We propose a new concurrency control, MARK-OPT, for
parallel B-trees, for the shared-nothing environment. When
SMOs occur, the proposed protocol marks the node for
which the X latch should be acquired first and it acquires
the X latch nodes below the marked height after it restarts.
We also propose three extensions of the MARK-OPT proto-
col. These extensions focus on tree structure changes from
other transactions. Four proposed protocols are classified
according to the presence of the phase shift and the restart
processed if the tree structure has changed. In addition, we
have experimented on an autonomous disk system imple-
mented on a large-scale blade system to compare the four
proposed protocols and the conventional protocols. The ex-
perimental results indicated that the proposed protocols are
effective and the relationship of frequency of restarts and
the time for acquisition of the X latch showed that 2P-REP-
MARK-OPT was the superior protocol.

Moreover, we have evaluated the performance of the
proposed protocols with the data migration. We have shown
that the proposed protocol improves the system through-
put with data migration and reduces the time required for
data migration. Therefore, the proposed protocol is effective
as a concurrency control for data migration. Data migra-
tion should be executed based on load evaluation, although
clients sent requests for data migration in this paper. An au-

1223

tonomous disk system can autonomously execute these op-
erations. Therefore, it is necessary to experiment with the
function.

In future studies we plan to apply the B-link [15], [16]
to the Fat-Btree. It is known that the B-link can achieve ex-
cellent concurrency control. The B-link uses links to chain
all nodes at each level together. In the B-link algorithm,
neither readers nor updaters latch-couple on their way down
to a leaf node and they acquire the latch only on one node
at a time. Moreover, the B-link algorithm does not require
restarts and it completes processing during one traverse. We
need to examine how to apply the B-link to the Fat-Btree
and compare this and the conventional protocols.

Moreover, we would like to compare our methods with
the PO-P protocol quantitatively by experiments, as de-
scribed in Sect. 6.

Acknowledgments

The authors would like to thank Dr. Jun Miyazaki of NAIST
for his advice on concurrency control for the Fat-Btree.
This work was partially supported by CREST of JST (Japan
Science and Technology Agency), SRC (Storage Research
Consortium), a Grant-in-Aid for Scientific Research from
MEXT Japan (#16016232), the Tokyo Institute of Technol-
ogy 21COE Program “Framework for Systematization and
Application of Large-Scale Knowledge Resources”, and the
NHK science and technical research laboratories.

References

[1] G. Copeland, W. Alexander, E. Boughter, and T. Keller, “Data place-
ment in Bubba,” Proc. 1988 ACM SIGMOD International Confer-
ence on Management of Data, pp.99-108, ACM SIGMOD, June
1988.

[2] S. Ghandeharizadeh and D.J. DeWitt, “Hybrid-range partitioning
strategy: A new declustering strategy for multiprocessor database
machines,” Proc. 16th International Conference on Very Large Data
Bases (VLDB ’90), pp.481-492, Aug. 1990.

[3] H. Yokota, Y. Kanemasa, and J. Miyazaki, “Fat-Btree: An update-
conscious parallel directory structure,” Proc. 15th International Con-
ference on Data Engineering (ICDE *99), pp.448-457, IEEE Com-
puter Society, March 1999.

[4] J. Miyazaki and H. Yokota, “Concurrency control and performance
evaluation of parallel B-tree structures,” IEICE Trans. Inf. & Syst.,
vol.E85-D, no.8, pp.1269-1283, Aug. 2002.

[5] R. Bayer and M. Schkolnick, “Concurrency of operations on B-
trees,” Acta Informatica, vol.9, no.1, pp.1-21, March 1977.

[6] C.Mohan and F. Levine, “ARIES/IM: An efficient and high concur-
rency index management method using write-ahead logging,” Proc.
1992 ACM SIGMOD International Conference on Management of
Data, pp.371-381, ACM SIGMOD, June 1992.

[7]1 H. Yokota, “Autonomous disks for advanced database applications,”
Proc. 1999 International Symposium on Database Applications in
Non-Traditional Environments (DANTE’99), pp.435-442, IEEE
Computer Society, Nov. 1999.

[8] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann, San Francisco, California, USA, 1992.

[9] V. Srinivasan and M.J. Carey, “Performance of B-tree concurrency
control algorithms,” Proc. 1991 ACM SIGMOD International Con-
ference on Management of Data, pp.416-425, ACM SIGMOD, May
1991.

1224

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Con-
trol and Recovery in Database Systems, Addison-Wesley, Cam-
bridge, Massachusetts, USA, 1987.

D. Ito and H. Yokota, “Automatic reconfiguration of an autonomous
disk cluster,” Proc. 2001 Pacific Rim International Symposium on
Dependable Computing (PRDC2001), pp.169-172, IEEE Computer
Society, Dec. 2001.

H. Yokota and R. Abe, “Secondary storage configuration for ad-
vanced data engineering,” in Nontraditional Database Systems,
ch. 14, pp.212-230, Taylor & Francis, London, UK and New York,
USA, 2002.

Y. Mond and Y. Raz, “Concurrency control in B+-trees databases
using preparatory operations,” Proc. 11th International Conference
on Very Large Data Bases (VLDB ’85), pp.331-334, Aug. 1985.

D. Amarmend, M. Aritsugi, and Y. Kanamori, “PO-P: A concur-
rency control protocol for parallel B-trees,” IPSJ Trans. Databases,
vol.45, n0.S1G 14(TOD 24), pp.30-38, Dec. 2004.

P.L. Lehman and S.B. Yao, “Efficient locking for concurrent opera-
tions on B-trees,” ACM Trans. Database Syst., vol.6, no.4, pp.650—
670, Dec. 1981.

V. Lanin and D. Shasha, “A symmetric concurrent B-tree algo-
rithm,” Proc. Fall Joint Computer Conference (FICC ’86), pp.380—
389, ACM and IEEE, Nov. 1986.

Tomohiro Yoshihara received the B.E. de-
gree from Tokyo Institute of Technology, Tokyo,
Japan, in 2005. He is currently a master course
student in Tokyo Institute of Technology. He is
engaged in research on data engineering. He is
a student member of DBSJ.

Dai Kobayashi received the B.E. and MLE.
degrees from Tokyo Institute of Technology in
2003 and 2005, respectively. He is currently a
Ph.D. student in Tokyo Institute of Technology
and a JSPS Research Fellow (DC). He is en-
gaged in research on data engineering and stor-
age systems. He is a student member of DBSJ.

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.8 AUGUST 2007

Haruo Yokota received the B.E., M.E., and
D.Eng. degrees from Tokyo Institute of Tech-
nology in 1980, 1982, and 1991, respectively.
He joined Fujitsu Ltd. in 1982, and was a re-
searcher at ICOT for the Japanese Sth Genera-
tion Computer Project from 1982 to 1986, and
at Fujitsu Laboratories Ltd. from 1986 to 1992.
From 1992 to 1998, he was an Associate Profes-
sor in Japan Advanced Institute of Science and
Technology (JAIST). He is currently a Professor
at Global Scientific Information and Computing
Center in Tokyo Institute of Technology. His research interests include
general research area of data engineering, information storage systems, and
dependable computing. He is a member of IPSJ, DBSJ, JSAI, IEEE, IEEE-
CS, ACM and ACM-SIGMOD.

